Relevance-Based Wireless Resource Allocation for a Machine Learning-Based Centralized Control System

Afsaneh Gharouni, P. Rost, Andreas Mäder, H. Schotten
{"title":"Relevance-Based Wireless Resource Allocation for a Machine Learning-Based Centralized Control System","authors":"Afsaneh Gharouni, P. Rost, Andreas Mäder, H. Schotten","doi":"10.1109/pimrc50174.2021.9569302","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) grows to be an inseparable part of future networks and an enabler for internet of things use-cases. Input components of machine learning units (MLU) have different levels of relevancy for determining accurate output. Assuming that attributes of each MLU are transmitted from multiple terminals, we revisit the resource allocation problem for a ML-based centralized control system, considering relevancy in order to provide best effort MLU outcome as key performance indicator. To achieve this goal, we propose a heuristic greedy resource allocation algorithm in combination with lookup tables of various payload requirements. These tables are generated by a Kullback-Leibler divergence (KLD)-based approach for each MLU. The KLD assigns number of quantization bits for input attributes of each terminal considering their relevancy.The proposed resource allocation is applied to a network of inverted pendulums on carts with MLUs as controllers. Simulation results demonstrate significant gains in MLU performance and efficiency in resource utilization when employing the proposed technique comparing with two benchmarks: the greedy maximum sum rate (GMSR) algorithm allocating resources once with equal payload requirements, and once KLD lookup table.","PeriodicalId":283606,"journal":{"name":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pimrc50174.2021.9569302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) grows to be an inseparable part of future networks and an enabler for internet of things use-cases. Input components of machine learning units (MLU) have different levels of relevancy for determining accurate output. Assuming that attributes of each MLU are transmitted from multiple terminals, we revisit the resource allocation problem for a ML-based centralized control system, considering relevancy in order to provide best effort MLU outcome as key performance indicator. To achieve this goal, we propose a heuristic greedy resource allocation algorithm in combination with lookup tables of various payload requirements. These tables are generated by a Kullback-Leibler divergence (KLD)-based approach for each MLU. The KLD assigns number of quantization bits for input attributes of each terminal considering their relevancy.The proposed resource allocation is applied to a network of inverted pendulums on carts with MLUs as controllers. Simulation results demonstrate significant gains in MLU performance and efficiency in resource utilization when employing the proposed technique comparing with two benchmarks: the greedy maximum sum rate (GMSR) algorithm allocating resources once with equal payload requirements, and once KLD lookup table.
基于机器学习的集中控制系统中基于相关性的无线资源分配
机器学习(ML)将成为未来网络不可分割的一部分,也是物联网用例的推动者。机器学习单元(MLU)的输入组件具有不同程度的相关性,以确定准确的输出。假设每个MLU的属性是从多个终端传输的,我们重新考虑了基于ml的集中控制系统的资源分配问题,考虑了相关性,以提供最大努力的MLU结果作为关键性能指标。为了实现这一目标,我们提出了一种启发式贪婪资源分配算法,并结合各种负载需求的查找表。这些表是由基于Kullback-Leibler散度(KLD)的方法为每个MLU生成的。KLD为每个终端的输入属性分配量化位数,考虑它们的相关性。将提出的资源分配方法应用于以mlu为控制器的倒立摆车网络。仿真结果表明,与贪心最大和速率(GMSR)算法和一次KLD查找表两种基准算法相比,采用所提出的技术在MLU性能和资源利用效率方面有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信