ESTIMATION OF THE VARIANCE FOR THE MAXIMUM LIKELIHOOD ESTIMATES IN NORMAL MIXTURE MODELS AND NORMAL HIDDEN MARKOV MODELS

M. Iqbal, A. Nishi, Yasuki Kikuchi, K. Nomakuchi
{"title":"ESTIMATION OF THE VARIANCE FOR THE MAXIMUM LIKELIHOOD ESTIMATES IN NORMAL MIXTURE MODELS AND NORMAL HIDDEN MARKOV MODELS","authors":"M. Iqbal, A. Nishi, Yasuki Kikuchi, K. Nomakuchi","doi":"10.5183/JJSCS.1002001_183","DOIUrl":null,"url":null,"abstract":"In this article, we derive the observed information matrices for normal mixture models and normal hidden Markov models. We also describe the parametric bootstrap method for the said models. The matrices and the method mentioned above are used to estimate the variance of the maximum likelihood estimates (MLEs) obtained by the Expectation-Maximization (EM) algorithm. Finally, a numerical example is shown using a data set named \\faithful\" given in the free statistical software R.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1002001_183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we derive the observed information matrices for normal mixture models and normal hidden Markov models. We also describe the parametric bootstrap method for the said models. The matrices and the method mentioned above are used to estimate the variance of the maximum likelihood estimates (MLEs) obtained by the Expectation-Maximization (EM) algorithm. Finally, a numerical example is shown using a data set named \faithful" given in the free statistical software R.
正态混合模型和正态隐马尔可夫模型中最大似然估计的方差估计
本文导出了正态混合模型和正态隐马尔可夫模型的观测信息矩阵。我们还描述了上述模型的参数自举方法。利用上述矩阵和方法对期望最大化算法得到的最大似然估计(MLEs)进行方差估计。最后,用自由统计软件R给出的数据集“\faithful”作为数值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信