CRF-based bibliography extraction from reference strings using a small amount of training data

Daiki Namikoshi, Manabu Ohta, A. Takasu, J. Adachi
{"title":"CRF-based bibliography extraction from reference strings using a small amount of training data","authors":"Daiki Namikoshi, Manabu Ohta, A. Takasu, J. Adachi","doi":"10.1109/ICDIM.2017.8244665","DOIUrl":null,"url":null,"abstract":"The effective use of digital libraries demands maintenance of bibliographic databases. Useful bibliographic information appears in the reference fields of academic papers, so we are developing a method for automatic extraction of bibliographic information from reference strings using a conditional random field (CRF). However, at least a few hundred reference strings are necessary to learn an accurate CRF. In this paper, we propose active learning and transfer learning techniques to reduce the required training data for CRFs. We evaluate extraction accuracies and the associated training cost by experiments.","PeriodicalId":144953,"journal":{"name":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","volume":"133 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2017.8244665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The effective use of digital libraries demands maintenance of bibliographic databases. Useful bibliographic information appears in the reference fields of academic papers, so we are developing a method for automatic extraction of bibliographic information from reference strings using a conditional random field (CRF). However, at least a few hundred reference strings are necessary to learn an accurate CRF. In this paper, we propose active learning and transfer learning techniques to reduce the required training data for CRFs. We evaluate extraction accuracies and the associated training cost by experiments.
使用少量训练数据从参考字符串中提取基于crf的书目
数字图书馆的有效利用需要书目数据库的维护。在学术论文的参考字段中会出现有用的书目信息,因此我们正在开发一种利用条件随机场(CRF)从参考字符串中自动提取书目信息的方法。然而,至少需要几百个引用字符串来学习准确的CRF。在本文中,我们提出了主动学习和迁移学习技术来减少crf所需的训练数据。我们通过实验评估了提取的准确性和相关的训练成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信