{"title":"Submodular reassignment problem for reallocating agents to tasks with synergy effects","authors":"Naonori Kakimura , Naoyuki Kamiyama , Yusuke Kobayashi , Yoshio Okamoto","doi":"10.1016/j.disopt.2021.100631","DOIUrl":null,"url":null,"abstract":"<div><p><span>We propose a new combinatorial optimization problem that we call the submodular reassignment problem. We are given </span><span><math><mi>k</mi></math></span><span><span> submodular functions over the same ground set, and we want to find a set that minimizes the sum of the distances to the sets of minimizers of all functions. The problem is motivated by a two-stage stochastic optimization problem with recourse summarized as follows. We are given two tasks to be processed and want to assign a set of workers to maximize the sum of profits. However, we do not know the value functions exactly, but only know a finite number of possible scenarios. Our goal is to determine the first-stage allocation of workers to minimize the expected number of reallocated workers after a scenario is realized at the second stage. This problem can be modeled by the submodular reassignment problem. We prove that the submodular reassignment problem can be solved in strongly polynomial time via submodular function minimization. We further provide a maximum-flow formulation of the problem that enables us to solve the problem without using a general submodular function minimization algorithm, and more efficiently both in theory and in practice. In our algorithm, we make use of Birkhoff’s </span>representation theorem<span> for distributive lattices.</span></span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"44 ","pages":"Article 100631"},"PeriodicalIF":0.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.disopt.2021.100631","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528621000104","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a new combinatorial optimization problem that we call the submodular reassignment problem. We are given submodular functions over the same ground set, and we want to find a set that minimizes the sum of the distances to the sets of minimizers of all functions. The problem is motivated by a two-stage stochastic optimization problem with recourse summarized as follows. We are given two tasks to be processed and want to assign a set of workers to maximize the sum of profits. However, we do not know the value functions exactly, but only know a finite number of possible scenarios. Our goal is to determine the first-stage allocation of workers to minimize the expected number of reallocated workers after a scenario is realized at the second stage. This problem can be modeled by the submodular reassignment problem. We prove that the submodular reassignment problem can be solved in strongly polynomial time via submodular function minimization. We further provide a maximum-flow formulation of the problem that enables us to solve the problem without using a general submodular function minimization algorithm, and more efficiently both in theory and in practice. In our algorithm, we make use of Birkhoff’s representation theorem for distributive lattices.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.