Steady-state performance analyses for sliding window max-correlation matching adaptive algorithms

W. Liu, A. Hu
{"title":"Steady-state performance analyses for sliding window max-correlation matching adaptive algorithms","authors":"W. Liu, A. Hu","doi":"10.1109/WCSP.2010.5632579","DOIUrl":null,"url":null,"abstract":"This paper presents the sliding exponential window max-correlation matching (SEWMCM) adaptive algorithm and the sliding rectangular window max-correlation matching (SRWMCM) adaptive algorithm for finding the maximum correlation of two different signal vectors. A unified approach to the steady-state excess mean square error (MSE) performance analyses for proposed algorithms is developed, including several general close-form analytical expressions based on the non-stationary system identification model. It is conclusively shown by numerical simulations that the SEWMCM algorithm converges faster than the SRWMCM algorithm, whereas the estimation accuracy and the steady-state performance of the SRWMCM outperform those of the SEWMCM and the conventional exponentially-weighted RLS (EWRLS).","PeriodicalId":448094,"journal":{"name":"2010 International Conference on Wireless Communications & Signal Processing (WCSP)","volume":"1090 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wireless Communications & Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2010.5632579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the sliding exponential window max-correlation matching (SEWMCM) adaptive algorithm and the sliding rectangular window max-correlation matching (SRWMCM) adaptive algorithm for finding the maximum correlation of two different signal vectors. A unified approach to the steady-state excess mean square error (MSE) performance analyses for proposed algorithms is developed, including several general close-form analytical expressions based on the non-stationary system identification model. It is conclusively shown by numerical simulations that the SEWMCM algorithm converges faster than the SRWMCM algorithm, whereas the estimation accuracy and the steady-state performance of the SRWMCM outperform those of the SEWMCM and the conventional exponentially-weighted RLS (EWRLS).
滑动窗口最大相关匹配自适应算法的稳态性能分析
本文提出了滑动指数窗最大相关匹配(SEWMCM)自适应算法和滑动矩形窗最大相关匹配(SRWMCM)自适应算法,用于寻找两个不同信号向量的最大相关。提出了一种统一的方法来分析所提出的算法的稳态超额均方误差(MSE)性能,包括几种基于非平稳系统辨识模型的通用封闭形式解析表达式。数值模拟结果表明,SEWMCM算法收敛速度快于SRWMCM算法,而SRWMCM算法的估计精度和稳态性能优于SEWMCM算法和传统的指数加权RLS (EWRLS)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信