Some optimization techniques of the matrix multiplication algorithm

Nenad Anchev, M. Gusev, S. Ristov, Blagoj Atanasovski
{"title":"Some optimization techniques of the matrix multiplication algorithm","authors":"Nenad Anchev, M. Gusev, S. Ristov, Blagoj Atanasovski","doi":"10.2498/iti.2013.0572","DOIUrl":null,"url":null,"abstract":"Dense matrix-matrix multiplication algorithm is widely used in large scientific applications, and often it is an important factor of the overall performance of the application. Therefore, optimizing this algorithm, both for parallel and serial execution would give an overall performance boost. In this paper we overview the most used dense matrix multiplication optimization techniques applicable for multicore processors. These methods can speedup the multicore parallel execution focusing on reducing the number of memory accesses and improving the algorithm according to hardware architecture and organization.","PeriodicalId":262789,"journal":{"name":"Proceedings of the ITI 2013 35th International Conference on Information Technology Interfaces","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ITI 2013 35th International Conference on Information Technology Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2498/iti.2013.0572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Dense matrix-matrix multiplication algorithm is widely used in large scientific applications, and often it is an important factor of the overall performance of the application. Therefore, optimizing this algorithm, both for parallel and serial execution would give an overall performance boost. In this paper we overview the most used dense matrix multiplication optimization techniques applicable for multicore processors. These methods can speedup the multicore parallel execution focusing on reducing the number of memory accesses and improving the algorithm according to hardware architecture and organization.
矩阵乘法算法的若干优化技术
密集矩阵-矩阵乘法算法广泛应用于大型科学应用中,往往是影响应用整体性能的重要因素。因此,针对并行和串行执行对该算法进行优化将提高整体性能。本文概述了适用于多核处理器的最常用的密集矩阵乘法优化技术。这些方法着眼于减少内存访问次数和根据硬件结构和组织改进算法,可以提高多核并行执行的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信