{"title":"Phased Genetic Programming for Application to the Traveling Salesman Problem","authors":"D. Chitty, E. Keedwell","doi":"10.1145/3583133.3590673","DOIUrl":null,"url":null,"abstract":"The Traveling Salesman Problem (TSP) is a difficult permutation-based optimisation problem typically solved using heuristics or meta-heuristics which search the solution problem space. An alternative is to find sets of manipulations to a solution which lead to optimality. Hyper-heuristics search this space applying heuristics sequentially, similar to a program. Genetic Programming (GP) evolves programs typically for classification or regression problems. This paper hypothesizes that GP can be used to evolve heuristic programs to directly solve the TSP. However, evolving a full program to solve the TSP is likely difficult due to required length and complexity. Consequently, a phased GP method is proposed whereby after a phase of generations the best program is saved and executed. The subsequent generation phase restarts operating on this saved program output. A full program is evolved piecemeal. Experiments demonstrate that whilst pure GP cannot solve TSP instances when using simple operators, Phased-GP can obtain solutions within 4% of optimal for TSPs of several hundred cities. Moreover, Phased-GP operates up to nine times faster than pure GP.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Traveling Salesman Problem (TSP) is a difficult permutation-based optimisation problem typically solved using heuristics or meta-heuristics which search the solution problem space. An alternative is to find sets of manipulations to a solution which lead to optimality. Hyper-heuristics search this space applying heuristics sequentially, similar to a program. Genetic Programming (GP) evolves programs typically for classification or regression problems. This paper hypothesizes that GP can be used to evolve heuristic programs to directly solve the TSP. However, evolving a full program to solve the TSP is likely difficult due to required length and complexity. Consequently, a phased GP method is proposed whereby after a phase of generations the best program is saved and executed. The subsequent generation phase restarts operating on this saved program output. A full program is evolved piecemeal. Experiments demonstrate that whilst pure GP cannot solve TSP instances when using simple operators, Phased-GP can obtain solutions within 4% of optimal for TSPs of several hundred cities. Moreover, Phased-GP operates up to nine times faster than pure GP.