Beam-Wave Resynchronization Method of the Non-Periodic Slow-Wave Structure for TWTs

Zheng Wen, Jirun Luo
{"title":"Beam-Wave Resynchronization Method of the Non-Periodic Slow-Wave Structure for TWTs","authors":"Zheng Wen, Jirun Luo","doi":"10.1109/ucmmt53364.2021.9569941","DOIUrl":null,"url":null,"abstract":"A beam-wave resynchronization method of the non-periodic slow-wave structure for TWTs is proposed. The condition of the beam-wave interaction is derived, analyzed and discussed. The non-periodic folded-waveguide SWS (NP FW-SWS) is introduced as an application example. The simulated results show that when the input signal is 0.4 W, the output power of the NP FW-TWT can be improved from 199 W to 233 W, and the corresponding electron efficiency can be increased from 27.6% to 32.4% accordingly. For the NP FW-TWTs, the particle velocity and phase velocity at 94 GHz along with the number of elements are also given and compared, which indicates that the beam-wave resynchronization method is beneficial for efficiency enhancement.","PeriodicalId":117712,"journal":{"name":"2021 14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ucmmt53364.2021.9569941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A beam-wave resynchronization method of the non-periodic slow-wave structure for TWTs is proposed. The condition of the beam-wave interaction is derived, analyzed and discussed. The non-periodic folded-waveguide SWS (NP FW-SWS) is introduced as an application example. The simulated results show that when the input signal is 0.4 W, the output power of the NP FW-TWT can be improved from 199 W to 233 W, and the corresponding electron efficiency can be increased from 27.6% to 32.4% accordingly. For the NP FW-TWTs, the particle velocity and phase velocity at 94 GHz along with the number of elements are also given and compared, which indicates that the beam-wave resynchronization method is beneficial for efficiency enhancement.
行波管非周期慢波结构的波束波重同步方法
提出了一种用于行波管非周期慢波结构的波束波重同步方法。推导、分析和讨论了波束相互作用的条件。作为应用实例,介绍了非周期折叠波导SWS (NP FW-SWS)。仿真结果表明,当输入信号为0.4 W时,NP型FW-TWT的输出功率可从199 W提高到233 W,电子效率可从27.6%提高到32.4%。对于NP型fw - twt,给出了94ghz时粒子速度和相速度随单元数的变化,并进行了比较,表明波束重同步方法有利于提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信