{"title":"Bio-Inspired Inverse Internal Model Feedforward Control for UAV Photoelectric Platform","authors":"Zhide Zhang, Zhengjie Wang, Shuo Zhang","doi":"10.1109/ICMIC.2018.8529912","DOIUrl":null,"url":null,"abstract":"The design of UAV photoelectric platform control system has been widely investigated for decades. One of its key aim is to isolate the UAV body motion while keep the line of sight (LOS) tracking the target. Inspired by the head rotation control of dragonfly, this paper presents a novel inverse internal model feedforward control scheme. The principle of this controller is twofold: 1) an integrated model of the photoelectric platform dynamics combined with the UAV body motion induced disturbance model is established as the internal model, 2) The deviation of the system output is taken as the expected output of the internal model. Furthermore, the internal model input is solved by a modified unknown input observer (UIO). Finally the control is completed by the feedforward of solved input. The numerical simulation shows the effectiveness of the controller.","PeriodicalId":262938,"journal":{"name":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2018.8529912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The design of UAV photoelectric platform control system has been widely investigated for decades. One of its key aim is to isolate the UAV body motion while keep the line of sight (LOS) tracking the target. Inspired by the head rotation control of dragonfly, this paper presents a novel inverse internal model feedforward control scheme. The principle of this controller is twofold: 1) an integrated model of the photoelectric platform dynamics combined with the UAV body motion induced disturbance model is established as the internal model, 2) The deviation of the system output is taken as the expected output of the internal model. Furthermore, the internal model input is solved by a modified unknown input observer (UIO). Finally the control is completed by the feedforward of solved input. The numerical simulation shows the effectiveness of the controller.