GraphMF: QoS Prediction for Large Scale Blockchain Service Selection

Yuhui Li, Jianlong Xu, Wei Liang
{"title":"GraphMF: QoS Prediction for Large Scale Blockchain Service Selection","authors":"Yuhui Li, Jianlong Xu, Wei Liang","doi":"10.1109/SmartBlock52591.2020.00038","DOIUrl":null,"url":null,"abstract":"Blockchain-as-a-service (BaaS) experienced a dramatical growth in recent years, making it a hot research topic. With the expanding scale of distributed services deployed on the blockchain system, it is increasingly urgent to evaluate quality of service (QoS) attributes of blockchain services and in-blockchain peers-clients connections. The complicated association of service invocation and network environment naturally form a graph, making it possible to extract features through graph neural networks (GNN). To incorporate graph-structured information in QoS prediction, we proposed a graph matrix factorization (GraphMF) take advantages of both GNNs and collaborative filtering to estimate missing QoS values in the data matrix. Experiment conducted on a real-world dataset demonstrated the effectiveness of our model.","PeriodicalId":443121,"journal":{"name":"2020 3rd International Conference on Smart BlockChain (SmartBlock)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Smart BlockChain (SmartBlock)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartBlock52591.2020.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Blockchain-as-a-service (BaaS) experienced a dramatical growth in recent years, making it a hot research topic. With the expanding scale of distributed services deployed on the blockchain system, it is increasingly urgent to evaluate quality of service (QoS) attributes of blockchain services and in-blockchain peers-clients connections. The complicated association of service invocation and network environment naturally form a graph, making it possible to extract features through graph neural networks (GNN). To incorporate graph-structured information in QoS prediction, we proposed a graph matrix factorization (GraphMF) take advantages of both GNNs and collaborative filtering to estimate missing QoS values in the data matrix. Experiment conducted on a real-world dataset demonstrated the effectiveness of our model.
大规模区块链服务选择的QoS预测
区块链即服务(BaaS)近年来经历了急剧增长,成为一个热门的研究课题。随着区块链系统上部署的分布式服务规模的不断扩大,对区块链服务和区块链内对等客户端连接的服务质量(QoS)属性进行评估变得越来越迫切。服务调用与网络环境的复杂关联自然形成了一个图,使得利用图神经网络(GNN)提取特征成为可能。为了将图结构信息整合到QoS预测中,我们提出了一种图矩阵分解(GraphMF)方法,利用gnn和协同过滤的优势来估计数据矩阵中缺失的QoS值。在真实数据集上进行的实验证明了我们模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信