The optimization of fuzzy rules based on hybrid estimation of distribution algorithms

Xiong Luo, Xue Bai
{"title":"The optimization of fuzzy rules based on hybrid estimation of distribution algorithms","authors":"Xiong Luo, Xue Bai","doi":"10.1109/WCICA.2012.6357942","DOIUrl":null,"url":null,"abstract":"Optimization of fuzzy rules based on numerical data is an important issue in the optimization design of fuzzy system. In this paper, based on an improved estimation of distribution algorithm, an optimization learning method COR_MUMDA for fuzzy rules is proposed. This method can generate fuzzy rules directly from numerical data. The method learn fuzzy rules mainly based on MUMDA (multi-group univariate marginal distribution estimation algorithm). Unlike the general estimation of distribution algorithms, MUMDA can increase the diversity of the population and avoid sticking at local optima. In addition, the elite genetic strategy is used to generate the next population. In this way, it reduces the possibility of losing the optimal solutions. To verify the efficiency of this algorithm, the simulation experiments are performed. The comparative results of three classic examples are given.","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6357942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimization of fuzzy rules based on numerical data is an important issue in the optimization design of fuzzy system. In this paper, based on an improved estimation of distribution algorithm, an optimization learning method COR_MUMDA for fuzzy rules is proposed. This method can generate fuzzy rules directly from numerical data. The method learn fuzzy rules mainly based on MUMDA (multi-group univariate marginal distribution estimation algorithm). Unlike the general estimation of distribution algorithms, MUMDA can increase the diversity of the population and avoid sticking at local optima. In addition, the elite genetic strategy is used to generate the next population. In this way, it reduces the possibility of losing the optimal solutions. To verify the efficiency of this algorithm, the simulation experiments are performed. The comparative results of three classic examples are given.
基于混合估计分布算法的模糊规则优化
基于数值数据的模糊规则优化是模糊系统优化设计中的一个重要问题。本文在改进分布估计算法的基础上,提出了一种模糊规则的优化学习方法COR_MUMDA。该方法可以直接从数值数据中生成模糊规则。该方法主要基于MUMDA(多组单变量边际分布估计算法)学习模糊规则。与一般的分布估计算法不同,MUMDA可以增加种群的多样性,避免陷入局部最优。此外,利用精英遗传策略产生下一代群体。这样就减少了丢失最优解的可能性。为了验证该算法的有效性,进行了仿真实验。给出了三个经典算例的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信