Boot Log Anomaly Detection with K-Seen-Before

Johan Garcia, Tobias Vehkajarvi
{"title":"Boot Log Anomaly Detection with K-Seen-Before","authors":"Johan Garcia, Tobias Vehkajarvi","doi":"10.1109/COMPSAC48688.2020.0-140","DOIUrl":null,"url":null,"abstract":"Software development for embedded systems, in particular code which interacts with boot-up procedures, can pose considerable challenges. In this work we propose the K-Seen-Before (KSB) approach to detect and highlight anomalous boot log messages, thus relieving developers from repeatedly having to manually examine boot log files of 1000+ lines. We describe the KSB instance based anomaly detection system and its relation to KNN. An industrial data set related to development of high-speed networking equipment is utilized to examine the effects of the KSB parameters on the amount of detected anomalies. The obtained results highlight the utility of KSB and provide indications of suitable KSB parameter settings for obtaining an appropriate trade-off for the cognitive workload of the developer with regards to log file analysis.","PeriodicalId":430098,"journal":{"name":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC48688.2020.0-140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Software development for embedded systems, in particular code which interacts with boot-up procedures, can pose considerable challenges. In this work we propose the K-Seen-Before (KSB) approach to detect and highlight anomalous boot log messages, thus relieving developers from repeatedly having to manually examine boot log files of 1000+ lines. We describe the KSB instance based anomaly detection system and its relation to KNN. An industrial data set related to development of high-speed networking equipment is utilized to examine the effects of the KSB parameters on the amount of detected anomalies. The obtained results highlight the utility of KSB and provide indications of suitable KSB parameter settings for obtaining an appropriate trade-off for the cognitive workload of the developer with regards to log file analysis.
引导日志异常检测与K-Seen-Before
嵌入式系统的软件开发,特别是与启动过程交互的代码,可能会带来相当大的挑战。在这项工作中,我们提出了K-Seen-Before (KSB)方法来检测和突出显示异常引导日志消息,从而使开发人员不必反复手动检查1000多行引导日志文件。描述了基于KSB实例的异常检测系统及其与KNN的关系。利用与高速网络设备开发相关的工业数据集来检查KSB参数对检测到的异常数量的影响。获得的结果突出了KSB的实用性,并提供了适当的KSB参数设置的指示,以便在日志文件分析方面为开发人员的认知工作负载获得适当的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信