Hysteresis-based optimization of data transfer throughput

M. S. Q. Z. Nine, Kemal Guner, T. Kosar
{"title":"Hysteresis-based optimization of data transfer throughput","authors":"M. S. Q. Z. Nine, Kemal Guner, T. Kosar","doi":"10.1145/2832099.2832104","DOIUrl":null,"url":null,"abstract":"The achievable throughput for a data transfer can be determined by a variety of factors such as network bandwidth, round trip time, background traffic, dataset size, and end-system configuration. For the best-effort optimization of the transfer throughput, three application-layer transfer parameters -- pipelining, parallelism and concurrency -- have been actively used in the literature. However, it is highly challenging to identify the best combination of these parameter settings for a specific data transfer request. In this paper, we analyze historical data consisting of 70 Million file transfers; apply data mining techniques to extract the hidden relations among the parameters and the optimal throughput; and propose a novel approach based on hysteresis to predict the optimal parameter settings.","PeriodicalId":108576,"journal":{"name":"Network-aware Data Management","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-aware Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2832099.2832104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The achievable throughput for a data transfer can be determined by a variety of factors such as network bandwidth, round trip time, background traffic, dataset size, and end-system configuration. For the best-effort optimization of the transfer throughput, three application-layer transfer parameters -- pipelining, parallelism and concurrency -- have been actively used in the literature. However, it is highly challenging to identify the best combination of these parameter settings for a specific data transfer request. In this paper, we analyze historical data consisting of 70 Million file transfers; apply data mining techniques to extract the hidden relations among the parameters and the optimal throughput; and propose a novel approach based on hysteresis to predict the optimal parameter settings.
基于迟滞的数据传输吞吐量优化
数据传输的可实现吞吐量可以由各种因素决定,例如网络带宽、往返时间、后台流量、数据集大小和终端系统配置。为了最大限度地优化传输吞吐量,文献中积极使用了三个应用层传输参数——流水线、并行和并发。但是,为特定的数据传输请求确定这些参数设置的最佳组合非常具有挑战性。在本文中,我们分析了由7000万文件传输组成的历史数据;应用数据挖掘技术提取参数之间的隐含关系和最优吞吐量;并提出了一种基于磁滞的最优参数预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信