Learning to Classify Threaten E-mail

S. Balamurugan, R. Rajaram
{"title":"Learning to Classify Threaten E-mail","authors":"S. Balamurugan, R. Rajaram","doi":"10.1109/AMS.2008.100","DOIUrl":null,"url":null,"abstract":"In this paper we study supervised classification of e-mails. We consider the task of threaten e-mail detection (i.e. email related to terrorism, fraud, etc.). In this supervised learning setting, we investigate the use of data mining classifiers for automatic threaten e-mail detection. We show that decision tree is a good choice for this task as it runs fast on large and high dimensional databases, is easy to tune and is highly accurate, outperforming popular algorithms such as support vector machines, Naive Bayes. In particular, we are interested in detecting fraudulent and possibly criminal activities from such e-mails.","PeriodicalId":122964,"journal":{"name":"2008 Second Asia International Conference on Modelling & Simulation (AMS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second Asia International Conference on Modelling & Simulation (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2008.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we study supervised classification of e-mails. We consider the task of threaten e-mail detection (i.e. email related to terrorism, fraud, etc.). In this supervised learning setting, we investigate the use of data mining classifiers for automatic threaten e-mail detection. We show that decision tree is a good choice for this task as it runs fast on large and high dimensional databases, is easy to tune and is highly accurate, outperforming popular algorithms such as support vector machines, Naive Bayes. In particular, we are interested in detecting fraudulent and possibly criminal activities from such e-mails.
学会分类威胁邮件
本文对电子邮件的监督分类进行了研究。我们考虑威胁电子邮件检测的任务(即与恐怖主义,欺诈等相关的电子邮件)。在这种监督学习设置中,我们研究了数据挖掘分类器在自动威胁电子邮件检测中的使用。我们表明决策树是这个任务的一个很好的选择,因为它在大型和高维数据库上运行速度快,易于调整并且高度准确,优于流行的算法,如支持向量机,朴素贝叶斯。我们特别感兴趣的是从这些电子邮件中发现欺诈和可能的犯罪活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信