IMM object tracking for high dynamic driving maneuvers

N. Kaempchen, K. Weiß, M. Schaefer, K. Dietmayer
{"title":"IMM object tracking for high dynamic driving maneuvers","authors":"N. Kaempchen, K. Weiß, M. Schaefer, K. Dietmayer","doi":"10.1109/IVS.2004.1336491","DOIUrl":null,"url":null,"abstract":"Classical object tracking approaches use a Kalman-filter with a single dynamic model which is therefore optimised to a single driving maneuver. In contrast the interacting multiple model (IMM) filter allows for several parallel models which are combined to a weighted estimate. Choosing models for different driving modes, such as constant speed, acceleration and strong acceleration changes, the object state estimation can be optimised for highly dynamic driving maneuvers. The paper describes the analysis of Stop&Go situations and the systematic parametrisation of the IMM method based on these statistics. The evaluation of the IMM approach is presented based on real sensor measurements of laser scanners, a radar and a video image processing unit.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

Abstract

Classical object tracking approaches use a Kalman-filter with a single dynamic model which is therefore optimised to a single driving maneuver. In contrast the interacting multiple model (IMM) filter allows for several parallel models which are combined to a weighted estimate. Choosing models for different driving modes, such as constant speed, acceleration and strong acceleration changes, the object state estimation can be optimised for highly dynamic driving maneuvers. The paper describes the analysis of Stop&Go situations and the systematic parametrisation of the IMM method based on these statistics. The evaluation of the IMM approach is presented based on real sensor measurements of laser scanners, a radar and a video image processing unit.
高动态驾驶机动的IMM目标跟踪
经典的目标跟踪方法使用具有单个动态模型的卡尔曼滤波器,因此该模型被优化为单个驾驶机动。相反,交互多模型(IMM)滤波器允许多个并行模型组合成一个加权估计。针对恒速、加速和强加速度变化等不同的驾驶模式选择模型,可以对高动态驾驶机动的目标状态估计进行优化。本文介绍了在此基础上对停驶情况的分析和IMM方法的系统参数化。基于激光扫描仪、雷达和视频图像处理单元的实际传感器测量结果,对IMM方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信