Hierarchical decomposition of datasets on irregular surface meshes

Georges-Pierre Bonneau, A. Gerussi
{"title":"Hierarchical decomposition of datasets on irregular surface meshes","authors":"Georges-Pierre Bonneau, A. Gerussi","doi":"10.1109/CGI.1998.694250","DOIUrl":null,"url":null,"abstract":"We introduce multiresolution analysis (MRA) algorithms intended to be used in scientific visualization, and based on a non-nested set of approximating spaces. The need for non-nested spaces arises from the fact that the required scaling functions do not fulfil any refinement equation. Therefore we introduce in the first part the concept of the approximated refinement equation, that allows to generalize the filter bank and exact reconstruction algorithms. The second part shows how this concept enables to define an MRA scheme for piecewise constant data defined on an arbitrary planar or spherical triangular mesh. The ability to deal with arbitrary triangular meshes, without subdivision connectivity, can be achieved only through the use of non-nested approximating spaces, as introduced in the first part.","PeriodicalId":434370,"journal":{"name":"Proceedings. Computer Graphics International (Cat. No.98EX149)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Computer Graphics International (Cat. No.98EX149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGI.1998.694250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We introduce multiresolution analysis (MRA) algorithms intended to be used in scientific visualization, and based on a non-nested set of approximating spaces. The need for non-nested spaces arises from the fact that the required scaling functions do not fulfil any refinement equation. Therefore we introduce in the first part the concept of the approximated refinement equation, that allows to generalize the filter bank and exact reconstruction algorithms. The second part shows how this concept enables to define an MRA scheme for piecewise constant data defined on an arbitrary planar or spherical triangular mesh. The ability to deal with arbitrary triangular meshes, without subdivision connectivity, can be achieved only through the use of non-nested approximating spaces, as introduced in the first part.
不规则曲面网格上数据集的分层分解
我们介绍了多分辨率分析(MRA)算法,旨在用于科学可视化,并基于一组非嵌套的近似空间。对非嵌套空间的需求源于这样一个事实,即所需的缩放函数不满足任何细化方程。因此,我们在第一部分中引入了近似细化方程的概念,它可以推广滤波器组和精确重构算法。第二部分展示了这个概念如何能够为定义在任意平面或球面三角形网格上的分段常量数据定义一个MRA方案。处理任意三角形网格的能力,没有细分连接,只能通过使用非嵌套的近似空间来实现,如第一部分所介绍的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信