{"title":"4.8GHz CMOS frequency multiplier with subharmonic pulse-injection locking","authors":"K. Takano, M. Motoyoshi, M. Fujishima","doi":"10.1109/ASSCC.2007.4425699","DOIUrl":null,"url":null,"abstract":"To realize low-power wireless transceivers, it is required to improve the performance of a frequency synthesizer, which is typically used as a frequency multiplier and is composed of a phase-locked loop (PLL). However a general PLL consumes much power and occupies a large area. To improve the frequency multiplier, we propose a pulse-injection-locked frequency multiplier (PILFYM), in which spurious signals are suppressed by using a pulse input signal. An injection-locked oscillator (ILO) in a PILFM was fabricated by a 0.18 mum 1P5M CMOS process. The core size was 10.8 mum x 10 S mum. The power consumption of the ILO is 9.6 muW at 250 MHz, and 1.47 mW at 4.8 GHz. The phase noise is -108 dBc/Hz at 1 MHz offset. For a ten-times frequency multiplier, output phase noise is 10 JB larger than the input phase noise below 10 kHz offset, which is the theoretical limit.","PeriodicalId":186095,"journal":{"name":"2007 IEEE Asian Solid-State Circuits Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2007.4425699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
To realize low-power wireless transceivers, it is required to improve the performance of a frequency synthesizer, which is typically used as a frequency multiplier and is composed of a phase-locked loop (PLL). However a general PLL consumes much power and occupies a large area. To improve the frequency multiplier, we propose a pulse-injection-locked frequency multiplier (PILFYM), in which spurious signals are suppressed by using a pulse input signal. An injection-locked oscillator (ILO) in a PILFM was fabricated by a 0.18 mum 1P5M CMOS process. The core size was 10.8 mum x 10 S mum. The power consumption of the ILO is 9.6 muW at 250 MHz, and 1.47 mW at 4.8 GHz. The phase noise is -108 dBc/Hz at 1 MHz offset. For a ten-times frequency multiplier, output phase noise is 10 JB larger than the input phase noise below 10 kHz offset, which is the theoretical limit.