CORRECTION TO THE PAPER “FRACTIONAL INDICES OF LOG DEL PEZZO SURFACES”

Pezzo Surfaces, V. Alekseev
{"title":"CORRECTION TO THE PAPER “FRACTIONAL INDICES OF LOG DEL PEZZO SURFACES”","authors":"Pezzo Surfaces, V. Alekseev","doi":"10.1070/IM1991V037N02ABEH002073","DOIUrl":null,"url":null,"abstract":"P ROOF . By Proposition 1.3 the cone of effective curves on X is generated by finitely many curves. From the formula K~ = n*Kx + Y^aiFi it follows that the divisor ~MK~ is effective for some positive integer Μ. Let C be an irreducible reduced curve with C < 0. We now carry out the following procedure: if / Φ C is an exceptional curve of genus 1 and C • I < 1, then we contract this curve. We repeat this procedure several times until we obtain a morphism / : X > 5\" with the following properties: S is a nonsingular surface, C{ — / (C ) is a nonsingular curve and for any curve Ι Φ Cx of genus 1 we have Cx • I > 2. If S = P 2 or F n , η < Ν, then C 2 > Ν and C 2 > c\\ k > N k. If C > 3 , then C > 3 k . Now suppose S φ Ρ 2 , F n and c\\ < 4 . We prove that the divisor 2KS + Cx is numerically effective. The cone of effective curves on the surface S is generated by finitely many curves; let {E^ be a minimal system of generators. If Ks · £J. > 0 and Et φ C, , then {2KS + Cx ) Ei> 0. If Ks • Ei < 0 and Ei φ C, , then Ej is an exceptional curve of genus 1 and {2KS + C, )·£ ,• > 0. Finally, {2KS + C,) · C{ = 4/ 7 Q(C, ) 4 C >0 . Thus, the divisor 2KS + Cx is numerically effective and the divisor —MKS =","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1991V037N02ABEH002073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

P ROOF . By Proposition 1.3 the cone of effective curves on X is generated by finitely many curves. From the formula K~ = n*Kx + Y^aiFi it follows that the divisor ~MK~ is effective for some positive integer Μ. Let C be an irreducible reduced curve with C < 0. We now carry out the following procedure: if / Φ C is an exceptional curve of genus 1 and C • I < 1, then we contract this curve. We repeat this procedure several times until we obtain a morphism / : X > 5" with the following properties: S is a nonsingular surface, C{ — / (C ) is a nonsingular curve and for any curve Ι Φ Cx of genus 1 we have Cx • I > 2. If S = P 2 or F n , η < Ν, then C 2 > Ν and C 2 > c\ k > N k. If C > 3 , then C > 3 k . Now suppose S φ Ρ 2 , F n and c\ < 4 . We prove that the divisor 2KS + Cx is numerically effective. The cone of effective curves on the surface S is generated by finitely many curves; let {E^ be a minimal system of generators. If Ks · £J. > 0 and Et φ C, , then {2KS + Cx ) Ei> 0. If Ks • Ei < 0 and Ei φ C, , then Ej is an exceptional curve of genus 1 and {2KS + C, )·£ ,• > 0. Finally, {2KS + C,) · C{ = 4/ 7 Q(C, ) 4 C >0 . Thus, the divisor 2KS + Cx is numerically effective and the divisor —MKS =
对“log del pezzo曲面分数指数”论文的修正
P屋顶。根据命题1.3,X上有效曲线的锥是由有限条曲线生成的。由公式K~ = n*Kx + Y^aiFi可得~MK~对某正整数Μ有效。设C为C < 0的不可约化约曲线。我们现在执行以下步骤:如果/ Φ C是1属且C•I < 1的例外曲线,那么我们收缩这条曲线。我们将这个过程重复几次,直到得到一个具有以下性质的态射/:X > 5”:S是一个非奇异曲面,C{- / (C)是一个非奇异曲线,对于任何曲线Ι Φ Cx属1,我们有Cx•I > 2。如果S = P 2或F n, η < Ν,则C 2 > Ν和C 2 > C \ k > n k,如果C >,则C > 3 k。现在假设S φ Ρ 2 F n和c\ < 4。证明了除数2KS + Cx是有效的。曲面S上的有效曲线锥是由有限条曲线生成的;设E^是一个极小的发电机系统。如果k·£J。> 0和Et φ C,,则{2KS + Cx) Ei> 0。如果Ks•Ei < 0且Ei φ C,,则Ej是属1和{2KS + C,)·£,•> 0的例外曲线。最后,{2KS + C,)·C{= 4/ 7q (C,) 4c >0。因此,除数2KS + Cx在数值上是有效的,除数-MKS =
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信