A Study for Hyperspectral Anomaly Change Detection on “Viareggio 2013 Trial” Dataset

Chen Wu, Yukun Lin, Bo Du, Liangpei Zhang
{"title":"A Study for Hyperspectral Anomaly Change Detection on “Viareggio 2013 Trial” Dataset","authors":"Chen Wu, Yukun Lin, Bo Du, Liangpei Zhang","doi":"10.1109/Multi-Temp.2019.8866969","DOIUrl":null,"url":null,"abstract":"Hyperspectral anomaly change detection aims at finding rare and anomalous changes in multi-temporal hyperspectral images. There are existing many works about anomaly change detection algorithms, whereas they are all proposed and evaluated on their own datasets. With the publication of “Viareggio 2013 Trial”, it is necessary to compare the state-of-the-art methods on this dataset with fully ground-truth references. In this paper, we compare 8 anomaly change detection methods on the two multi-temporal pairs of “Viareggio 2013 Trial”. The experimental results indicate that slow feature analysis with LCRA obtains the best performance.","PeriodicalId":106790,"journal":{"name":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Multi-Temp.2019.8866969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hyperspectral anomaly change detection aims at finding rare and anomalous changes in multi-temporal hyperspectral images. There are existing many works about anomaly change detection algorithms, whereas they are all proposed and evaluated on their own datasets. With the publication of “Viareggio 2013 Trial”, it is necessary to compare the state-of-the-art methods on this dataset with fully ground-truth references. In this paper, we compare 8 anomaly change detection methods on the two multi-temporal pairs of “Viareggio 2013 Trial”. The experimental results indicate that slow feature analysis with LCRA obtains the best performance.
“Viareggio 2013 Trial”数据集高光谱异常变化检测研究
高光谱异常变化检测的目的是发现多时段高光谱图像中罕见的异常变化。目前关于异常变化检测算法的研究工作很多,但这些算法都是在各自的数据集上提出和评估的。随着“Viareggio 2013 Trial”的发表,有必要将该数据集上最先进的方法与完全真实的参考文献进行比较。本文比较了8种异常变化检测方法在“Viareggio 2013 Trial”的两个多时相对上的差异。实验结果表明,用LCRA进行慢特征分析获得了最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信