{"title":"Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac-Moody groups II","authors":"Seth Baldwin, Shrawan Kumar","doi":"10.1090/ERT/494","DOIUrl":null,"url":null,"abstract":"We prove sign-alternation of the structure constants in the basis of structure sheaves of opposite Schubert varieties in the torus-equivariant Grothendieck group of coherent sheaves on the flag varieties $G/P$ associated to an arbitrary symmetrizable Kac-Moody group $G$, where $P$ is any parabolic subgroup. This generalizes the work of Anderson-Griffeth-Miller from the finite case to the general Kac-Moody case, and affirmatively answers a conjecture of Lam-Schilling-Shimozono regarding the signs of the structure constants in the case of the affine Grassmannian.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"74 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/ERT/494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We prove sign-alternation of the structure constants in the basis of structure sheaves of opposite Schubert varieties in the torus-equivariant Grothendieck group of coherent sheaves on the flag varieties $G/P$ associated to an arbitrary symmetrizable Kac-Moody group $G$, where $P$ is any parabolic subgroup. This generalizes the work of Anderson-Griffeth-Miller from the finite case to the general Kac-Moody case, and affirmatively answers a conjecture of Lam-Schilling-Shimozono regarding the signs of the structure constants in the case of the affine Grassmannian.