Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac-Moody groups II

Seth Baldwin, Shrawan Kumar
{"title":"Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac-Moody groups II","authors":"Seth Baldwin, Shrawan Kumar","doi":"10.1090/ERT/494","DOIUrl":null,"url":null,"abstract":"We prove sign-alternation of the structure constants in the basis of structure sheaves of opposite Schubert varieties in the torus-equivariant Grothendieck group of coherent sheaves on the flag varieties $G/P$ associated to an arbitrary symmetrizable Kac-Moody group $G$, where $P$ is any parabolic subgroup. This generalizes the work of Anderson-Griffeth-Miller from the finite case to the general Kac-Moody case, and affirmatively answers a conjecture of Lam-Schilling-Shimozono regarding the signs of the structure constants in the case of the affine Grassmannian.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/ERT/494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We prove sign-alternation of the structure constants in the basis of structure sheaves of opposite Schubert varieties in the torus-equivariant Grothendieck group of coherent sheaves on the flag varieties $G/P$ associated to an arbitrary symmetrizable Kac-Moody group $G$, where $P$ is any parabolic subgroup. This generalizes the work of Anderson-Griffeth-Miller from the finite case to the general Kac-Moody case, and affirmatively answers a conjecture of Lam-Schilling-Shimozono regarding the signs of the structure constants in the case of the affine Grassmannian.
与Kac-Moody类群相关的标志品种的$T$-等变$K$-理论的正性ⅱ
在任意对称Kac-Moody群$G$上,我们证明了$P$为任意抛物子群,在旗簇$G/P$上,相干束的环-等变Grothendieck群上相对Schubert簇结构常数的符号交替性。这将anderson - griffith - miller的工作从有限情况推广到一般的Kac-Moody情况,并肯定地回答了Lam-Schilling-Shimozono关于仿射Grassmannian情况下结构常数符号的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信