Lip reading using fuzzy logic network with memory

Stefan Badura, M. Klimo, O. Škvarek
{"title":"Lip reading using fuzzy logic network with memory","authors":"Stefan Badura, M. Klimo, O. Škvarek","doi":"10.1109/ICAICT.2012.6398471","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach for lip reading. Most existing systems for lip reading utilize a kind of neural network or hidden Markov models as classifiers. We propose a new approach where fuzzy combinational networks with fuzzy flip-flop memories are combined into one network. Our model introduces a hierarchical structure of this network, where single layers are contextually dependent. Experiments with fuzzy flip-flop network propose a new approach in the process of automatic lip-reading system where time dependence in inputs series is modeled with memories. Such approach provides possibilities for continuous speech recognition.","PeriodicalId":221511,"journal":{"name":"2012 6th International Conference on Application of Information and Communication Technologies (AICT)","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 6th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICT.2012.6398471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes a new approach for lip reading. Most existing systems for lip reading utilize a kind of neural network or hidden Markov models as classifiers. We propose a new approach where fuzzy combinational networks with fuzzy flip-flop memories are combined into one network. Our model introduces a hierarchical structure of this network, where single layers are contextually dependent. Experiments with fuzzy flip-flop network propose a new approach in the process of automatic lip-reading system where time dependence in inputs series is modeled with memories. Such approach provides possibilities for continuous speech recognition.
唇读使用模糊逻辑网络与记忆
本文提出了一种新的唇读方法。大多数现有的唇读系统使用一种神经网络或隐马尔可夫模型作为分类器。我们提出了一种新的方法,将模糊组合网络与模糊触发器记忆组合成一个网络。我们的模型引入了该网络的分层结构,其中单层是上下文相关的。模糊触发器网络的实验为自动唇读系统提供了一种新的方法,该方法将输入序列的时间依赖性与记忆建模。这种方法为连续语音识别提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信