Bounds on estimation errors of discrete-time filters under modeling uncertainty

R. Patel, M. Toda
{"title":"Bounds on estimation errors of discrete-time filters under modeling uncertainty","authors":"R. Patel, M. Toda","doi":"10.1109/CDC.1978.268002","DOIUrl":null,"url":null,"abstract":"The performance of Kalman-type, linear, discrete-time filters in the presence of modeling errors is considered. The discussion is limited to stationary performance, and bounds are obtained for the performance index, the mean-squared error of estimates for suboptimal and optimal (Kalman) filters. The computation of these bounds requires information on only the model matrices and the range of errors for these matrices. Consequently, a designer can easily compare the performance of a suboptimal filter with that of the optimal filter, when only the range of errors in the elements of the model matrices are available.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1978.268002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The performance of Kalman-type, linear, discrete-time filters in the presence of modeling errors is considered. The discussion is limited to stationary performance, and bounds are obtained for the performance index, the mean-squared error of estimates for suboptimal and optimal (Kalman) filters. The computation of these bounds requires information on only the model matrices and the range of errors for these matrices. Consequently, a designer can easily compare the performance of a suboptimal filter with that of the optimal filter, when only the range of errors in the elements of the model matrices are available.
建模不确定性下离散时间滤波器估计误差的界
考虑了存在建模误差时卡尔曼型、线性、离散时间滤波器的性能。讨论仅限于平稳性能,并得到了次优和最优(卡尔曼)滤波器的性能指标、估计均方误差的界。这些边界的计算只需要关于模型矩阵和这些矩阵的误差范围的信息。因此,当只有模型矩阵元素的误差范围可用时,设计人员可以很容易地比较次优滤波器与最优滤波器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信