A 1W8R 20T SRAM Codebook for 20% Energy Reduction in Mixed-Precision Deep-Learning Inference Processor System

Ryotaro Ohara, Masaya Kabuto, Masakazu Taichi, Atsushi Fukunaga, Yuto Yasuda, Riku Hamabe, S. Izumi, H. Kawaguchi
{"title":"A 1W8R 20T SRAM Codebook for 20% Energy Reduction in Mixed-Precision Deep-Learning Inference Processor System","authors":"Ryotaro Ohara, Masaya Kabuto, Masakazu Taichi, Atsushi Fukunaga, Yuto Yasuda, Riku Hamabe, S. Izumi, H. Kawaguchi","doi":"10.1109/AICAS57966.2023.10168555","DOIUrl":null,"url":null,"abstract":"This study introduces a 1W8R 20T multiport memory for codebook quantization in deep-learning processors. We manufactured the memory in a 40 nm process and achieved memory read-access time at 2.75 ns and 2.7-pj/byte power consumption. In addition, we used NVDLA, which was NVIDIA’s deep-learning processor, as a motif and simulated it based on the power obtained from the actual proposed memory. The obtained power and area reduction results are 20.24% and 26.24%, respectively.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"297 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a 1W8R 20T multiport memory for codebook quantization in deep-learning processors. We manufactured the memory in a 40 nm process and achieved memory read-access time at 2.75 ns and 2.7-pj/byte power consumption. In addition, we used NVDLA, which was NVIDIA’s deep-learning processor, as a motif and simulated it based on the power obtained from the actual proposed memory. The obtained power and area reduction results are 20.24% and 26.24%, respectively.
用于混合精度深度学习推理处理器系统能耗降低20%的1w8r20t SRAM码本
本研究介绍一种用于深度学习处理器码本量化的1w8r20t多端口存储器。我们在40 nm工艺中制造了存储器,并实现了存储器读取访问时间为2.75 ns和2.7 pj/byte的功耗。此外,我们使用NVIDIA的深度学习处理器NVDLA作为母题,并根据从实际提议的存储器中获得的功率进行模拟。得到的功率和面积分别降低20.24%和26.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信