Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness

Matthieu Nesme, Y. Payan, F. Faure
{"title":"Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness","authors":"Matthieu Nesme, Y. Payan, F. Faure","doi":"10.2312/PE/vriphys/vriphys06/017-024","DOIUrl":null,"url":null,"abstract":"We present a new method for physically animating deformable shapes using finite element models (FEM). Contrary to commonly used methods based on tetrahedra, our finite elements are the bounding voxels of a given shape at arbitrary resolution. This alleviates the complexities and limitations of tetrahedral volume meshing and results in regular, well-conditionned meshes. We show how to build the voxels and how to set the masses and stiffnesses in order to model the physical properties as accurately as possible at any given resolution. Additionally, we extend a fast and robust tetrahedron-FEM approach to the case of hexahedral elements. This permits simulation of arbitrarily complex shapes at interactive rates in a manner that takes into account the distribution of material within the elements.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Virtual Reality Interactions and Physical Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PE/vriphys/vriphys06/017-024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We present a new method for physically animating deformable shapes using finite element models (FEM). Contrary to commonly used methods based on tetrahedra, our finite elements are the bounding voxels of a given shape at arbitrary resolution. This alleviates the complexities and limitations of tetrahedral volume meshing and results in regular, well-conditionned meshes. We show how to build the voxels and how to set the masses and stiffnesses in order to model the physical properties as accurately as possible at any given resolution. Additionally, we extend a fast and robust tetrahedron-FEM approach to the case of hexahedral elements. This permits simulation of arbitrarily complex shapes at interactive rates in a manner that takes into account the distribution of material within the elements.
动画形状在任意分辨率与非均匀的刚度
我们提出了一种利用有限元模型(FEM)对可变形形状进行物理动画的新方法。与常用的基于四面体的方法相反,我们的有限元是任意分辨率下给定形状的边界体素。这减轻了四面体体积网格划分的复杂性和局限性,并得到规则的、条件良好的网格。我们展示了如何构建体素以及如何设置质量和刚度,以便在任何给定的分辨率下尽可能准确地建模物理属性。此外,我们将快速、稳健的四面体有限元方法推广到六面体单元的情况。这允许以一种考虑到元素内材料分布的方式以交互速率模拟任意复杂形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信