A Deep Learning Method for Sentence Embeddings Based on Hadamard Matrix Encodings

Mircea Trifan, B. Ionescu, D. Ionescu
{"title":"A Deep Learning Method for Sentence Embeddings Based on Hadamard Matrix Encodings","authors":"Mircea Trifan, B. Ionescu, D. Ionescu","doi":"10.1109/SACI55618.2022.9919604","DOIUrl":null,"url":null,"abstract":"Sentence Embedding is recently getting an accrued attention from the Natural Language Processing (NLP) community. An embedding maps a sentence to a vector of real numbers with applications to similarity and inference tasks. Our method uses: word embeddings, dependency parsing, Hadamard matrix with spread spectrum algorithm and a deep learning neural network trained on the Sentences Involving Compositional Knowledge (SICK) corpus. The dependency parsing labels are associated with rows in a Hadamard matrix. Words embeddings are stored at corresponding rows in another matrix. Using the spread spectrum encoding algorithm the two matrices are combined into a single unidimensional vector. This embedding is then fed to a neural network achieving 80% accuracy while the best score from the SEMEVAL 2014 competition is 84%. The advantages of this method stem from encoding of any sentence size, using only fully connected neural networks, tacking into account the word order and handling long range word dependencies.","PeriodicalId":105691,"journal":{"name":"2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI55618.2022.9919604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sentence Embedding is recently getting an accrued attention from the Natural Language Processing (NLP) community. An embedding maps a sentence to a vector of real numbers with applications to similarity and inference tasks. Our method uses: word embeddings, dependency parsing, Hadamard matrix with spread spectrum algorithm and a deep learning neural network trained on the Sentences Involving Compositional Knowledge (SICK) corpus. The dependency parsing labels are associated with rows in a Hadamard matrix. Words embeddings are stored at corresponding rows in another matrix. Using the spread spectrum encoding algorithm the two matrices are combined into a single unidimensional vector. This embedding is then fed to a neural network achieving 80% accuracy while the best score from the SEMEVAL 2014 competition is 84%. The advantages of this method stem from encoding of any sentence size, using only fully connected neural networks, tacking into account the word order and handling long range word dependencies.
基于Hadamard矩阵编码的句子嵌入深度学习方法
句子嵌入最近受到了自然语言处理(NLP)社区的关注。嵌入将句子映射到实数向量,并应用于相似性和推理任务。我们的方法使用了:词嵌入、依赖解析、Hadamard矩阵与扩频算法和深度学习神经网络在涉及组成知识的句子(SICK)语料库上训练。依赖解析标签与Hadamard矩阵中的行相关联。词嵌入存储在另一个矩阵的相应行中。利用扩频编码算法将这两个矩阵组合成一个单一的一维向量。然后将这种嵌入馈送到神经网络中,达到80%的准确率,而SEMEVAL 2014比赛的最佳分数为84%。该方法的优点在于可以对任意句子大小进行编码,只使用完全连接的神经网络,考虑词序并处理长范围的词依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信