Classification of Sampling Methods and its Applications in Various Fields

D. UmaPriya
{"title":"Classification of Sampling Methods and its Applications in Various Fields","authors":"D. UmaPriya","doi":"10.36039/AA082015005","DOIUrl":null,"url":null,"abstract":"Statistics deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments. In applying statistics to, e.g., a scientific, industrial, or societal problem, it is conventional to begin with a statistical population or a statistical model process to be studied. Populations can be diverse topics such as \"all persons living in a country\" or \"every atom composing a crystal\". Statistics is the mathematical science involving the collection, analysis and interpretation of data. A number of specialties have evolved to apply statistical theory and methods to various disciplines. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. In statistics, quality assurance, and survey methodology, sampling is concerned with the selection of a subset of individuals from within a statistical population to estimate characteristics of the whole population. In survey sampling, weights can be applied to the data to adjust for the sample design, particularly stratified sampling. Statistics tools are necessary for the data analysis. The computer revolution has implications for the future of statistics with new emphasis on \"experimental\" and \"empirical\" statistics. A large number of both general and special purpose statistical software are now available.  Results from probability theory and statistical theory are employed to guide practice. In business and medical research, sampling is widely used for gathering information about a population.","PeriodicalId":360729,"journal":{"name":"Automation and Autonomous System","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation and Autonomous System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36039/AA082015005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Statistics deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments. In applying statistics to, e.g., a scientific, industrial, or societal problem, it is conventional to begin with a statistical population or a statistical model process to be studied. Populations can be diverse topics such as "all persons living in a country" or "every atom composing a crystal". Statistics is the mathematical science involving the collection, analysis and interpretation of data. A number of specialties have evolved to apply statistical theory and methods to various disciplines. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. In statistics, quality assurance, and survey methodology, sampling is concerned with the selection of a subset of individuals from within a statistical population to estimate characteristics of the whole population. In survey sampling, weights can be applied to the data to adjust for the sample design, particularly stratified sampling. Statistics tools are necessary for the data analysis. The computer revolution has implications for the future of statistics with new emphasis on "experimental" and "empirical" statistics. A large number of both general and special purpose statistical software are now available.  Results from probability theory and statistical theory are employed to guide practice. In business and medical research, sampling is widely used for gathering information about a population.
抽样方法的分类及其在各个领域的应用
统计学涉及数据的所有方面,包括根据调查和实验的设计来规划数据收集。在将统计学应用于科学、工业或社会问题时,通常从要研究的统计群体或统计模型过程开始。人口可以是不同的主题,如“居住在一个国家的所有人”或“组成晶体的每个原子”。统计学是一门涉及数据收集、分析和解释的数学科学。许多专业已经发展到将统计理论和方法应用于各种学科。当无法收集人口普查数据时,统计学家通过开发特定的实验设计和调查样本来收集数据。代表性抽样确保推论和结论可以安全地从样本扩展到整个人群。在统计学、质量保证和调查方法中,抽样涉及从统计人口中选择个人的子集来估计整个人口的特征。在调查抽样中,可以对数据施加权重以调整样本设计,特别是分层抽样。统计工具对数据分析是必要的。计算机革命对统计的未来有影响,新的重点是“实验”和“经验”统计。现在有大量的通用和专用统计软件。应用概率论和统计理论的结果指导实践。在商业和医学研究中,抽样被广泛用于收集有关人口的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信