Navigation algorithm for autonomous devices based on biological waves

A. Vázquez-Otero, A.P. Muuzuri
{"title":"Navigation algorithm for autonomous devices based on biological waves","authors":"A. Vázquez-Otero, A.P. Muuzuri","doi":"10.1109/CNNA.2010.5430310","DOIUrl":null,"url":null,"abstract":"Bistable systems are known to produce, under some circumstances, patterns with a well-defined wavelength. Two fronts, rather than annihilating upon collision as it is typically observed in excitation waves, they stop at a distance from each other that coincides with the characteristic wavelength of the pattern. In this paper, we show how to use these properties of fronts in bistable systems to solve computational problems such as finding the shortest path in a labyrinth and navigation through a field with walls (labyrinth without the knowledge of the end point).","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Bistable systems are known to produce, under some circumstances, patterns with a well-defined wavelength. Two fronts, rather than annihilating upon collision as it is typically observed in excitation waves, they stop at a distance from each other that coincides with the characteristic wavelength of the pattern. In this paper, we show how to use these properties of fronts in bistable systems to solve computational problems such as finding the shortest path in a labyrinth and navigation through a field with walls (labyrinth without the knowledge of the end point).
基于生物波的自主设备导航算法
已知双稳态系统在某些情况下产生具有明确波长的图案。两个锋面,而不是在碰撞中湮灭,就像在激发波中通常观察到的那样,它们在彼此之间的距离与图案的特征波长一致时停止。在本文中,我们展示了如何在双稳态系统中使用这些前沿的属性来解决计算问题,例如在迷宫中找到最短路径和在有墙的场地中导航(不知道终点的迷宫)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信