Surface

Eleanor Chan
{"title":"Surface","authors":"Eleanor Chan","doi":"10.4324/9780429326431-5","DOIUrl":null,"url":null,"abstract":". Let S be a smooth projective algebraic surface satisfying the following property: H i ( S,B ) = 0 for i > 0, for any irreducible and reduced curve B of S . The aim of this paper is to provide a characterization of special linear systems on S which are singular along a set of double points in very general position. As an application, the dimension of such systems is evaluated in case S is a simple Abelian surface, a K 3 surface which does not contain elliptic curves or an anticanonical rational surface.","PeriodicalId":272977,"journal":{"name":"Mathematics and the Craft of Thought in the Anglo-Dutch Renaissance","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and the Craft of Thought in the Anglo-Dutch Renaissance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9780429326431-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Let S be a smooth projective algebraic surface satisfying the following property: H i ( S,B ) = 0 for i > 0, for any irreducible and reduced curve B of S . The aim of this paper is to provide a characterization of special linear systems on S which are singular along a set of double points in very general position. As an application, the dimension of such systems is evaluated in case S is a simple Abelian surface, a K 3 surface which does not contain elliptic curves or an anticanonical rational surface.
表面
. 设S为光滑射影代数曲面,满足以下性质:对于任意S的不可约约曲线B,当i > 0时,H i (S,B) = 0。本文的目的是给出S上沿非常一般位置上的一组双点奇异的特殊线性系统的一个刻划。作为应用,在S为简单阿贝尔曲面、不含椭圆曲线的k3曲面或反正则有理曲面的情况下,计算了这类系统的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信