Asynchronous Communication Schemes for Finite Difference Methods on Multiple GPUs

D. Playne, K. Hawick
{"title":"Asynchronous Communication Schemes for Finite Difference Methods on Multiple GPUs","authors":"D. Playne, K. Hawick","doi":"10.1109/CCGRID.2010.86","DOIUrl":null,"url":null,"abstract":"Finite difference methods continue to provide an important and parallelisable approach to many numerical simulations problems. Iterative multigrid and multilevel algorithms can converge faster than ordinary finite difference methods but can be more difficult to parallelise. Data parallel paradigms tend to lend themselves particularly well to solving regular mesh PDEs whereby low latency communications and high compute to communications ratios can yield high levels of computational efficiency and raw performance. We report on some practical algorithmic and data layout approaches and on performance data on a range of Graphical Processing Units (GPUs) with CUDA. We focus on the use of multiple GPU devices with a single CPU host.","PeriodicalId":444485,"journal":{"name":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2010.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Finite difference methods continue to provide an important and parallelisable approach to many numerical simulations problems. Iterative multigrid and multilevel algorithms can converge faster than ordinary finite difference methods but can be more difficult to parallelise. Data parallel paradigms tend to lend themselves particularly well to solving regular mesh PDEs whereby low latency communications and high compute to communications ratios can yield high levels of computational efficiency and raw performance. We report on some practical algorithmic and data layout approaches and on performance data on a range of Graphical Processing Units (GPUs) with CUDA. We focus on the use of multiple GPU devices with a single CPU host.
多gpu上有限差分方法的异步通信方案
有限差分方法继续为许多数值模拟问题提供一种重要的并行方法。迭代多网格和多层算法收敛速度快于普通有限差分方法,但难于并行化。数据并行范式往往特别适合于解决规则网格pde,在这种情况下,低延迟通信和高计算通信比可以产生高水平的计算效率和原始性能。我们报告了一些实用的算法和数据布局方法,以及一系列具有CUDA的图形处理单元(gpu)上的性能数据。我们专注于在单个CPU主机上使用多个GPU设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信