Iterative Fuzzy Support Vector Machine Classification

A. Shilton, D. Lai
{"title":"Iterative Fuzzy Support Vector Machine Classification","authors":"A. Shilton, D. Lai","doi":"10.1109/FUZZY.2007.4295570","DOIUrl":null,"url":null,"abstract":"Fuzzy support vector machine (FSVM) classifiers are a class of nonlinear binary classifiers which extend Vapnik's support vector machine (SVM) formulation. In the absence of additional information, fuzzy membership values are usually selected based on the distribution of training vectors, where a number of assumptions are made about the underlying shape of this distribution. In this paper we present an alternative method of generating membership values which we call iterative FSVM (I-FSVM). Our method generates membership values iteratively based on the positions of training vectors relative to the SVM decision surface itself. We show that our algorithm is capable of generating results equivalent to an SVM with a modified (non distance based) penalty (risk) function. Experiments have been carried out on three real world binary classification problems taken from the UCI repository, namely the spambase dataset and the adult (census) dataset.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Fuzzy support vector machine (FSVM) classifiers are a class of nonlinear binary classifiers which extend Vapnik's support vector machine (SVM) formulation. In the absence of additional information, fuzzy membership values are usually selected based on the distribution of training vectors, where a number of assumptions are made about the underlying shape of this distribution. In this paper we present an alternative method of generating membership values which we call iterative FSVM (I-FSVM). Our method generates membership values iteratively based on the positions of training vectors relative to the SVM decision surface itself. We show that our algorithm is capable of generating results equivalent to an SVM with a modified (non distance based) penalty (risk) function. Experiments have been carried out on three real world binary classification problems taken from the UCI repository, namely the spambase dataset and the adult (census) dataset.
迭代模糊支持向量机分类
模糊支持向量机(FSVM)分类器是一类扩展了Vapnik支持向量机(SVM)公式的非线性二元分类器。在缺乏额外信息的情况下,通常根据训练向量的分布来选择模糊隶属度值,其中对该分布的潜在形状做出了许多假设。本文提出了一种生成隶属度值的替代方法,我们称之为迭代FSVM (I-FSVM)。我们的方法基于训练向量相对于支持向量机决策面本身的位置迭代地生成隶属度值。我们表明,我们的算法能够生成与具有修改(非基于距离的)惩罚(风险)函数的支持向量机等效的结果。实验已经在三个来自UCI存储库的现实世界的二进制分类问题上进行了,即spambase数据集和成人(人口普查)数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信