Enhancing speaker verification in noisy environments using Recursive Least-Squares (RLS) adaptive filter

M. Z. Ilyas, S. Samad, A. Hussain, K. A. Ishak
{"title":"Enhancing speaker verification in noisy environments using Recursive Least-Squares (RLS) adaptive filter","authors":"M. Z. Ilyas, S. Samad, A. Hussain, K. A. Ishak","doi":"10.1109/ITSIM.2008.4631877","DOIUrl":null,"url":null,"abstract":"In this paper, we present a speaker verification system based on the Hidden Markov Model (HMM) technique and Recursive Least Squares (RLS) adaptive filtering. The aim of using RLS adaptive filtering is to improve the HMM performance in noisy environments. A Malay spoken digit database is used for the testing and validation modules. It is shown that, in a clean environment a total success rate (TSR) of 89.97% is achieved using HMM. For speaker verification, the true speaker rejection rate is 25.3% while the impostor acceptance rate is 9.99% and the equal error rate (EER) is 16.66%. In noisy environments without RLS adaptive filtering TSRs of between 43.07%–51.26% are achieved for SNRs of 0–30 dBs. Meanwhile, after RLS filtering, TSRs of between 50.95%–56.75% are achieved for SNRs 0–30 dB.","PeriodicalId":314159,"journal":{"name":"2008 International Symposium on Information Technology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSIM.2008.4631877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a speaker verification system based on the Hidden Markov Model (HMM) technique and Recursive Least Squares (RLS) adaptive filtering. The aim of using RLS adaptive filtering is to improve the HMM performance in noisy environments. A Malay spoken digit database is used for the testing and validation modules. It is shown that, in a clean environment a total success rate (TSR) of 89.97% is achieved using HMM. For speaker verification, the true speaker rejection rate is 25.3% while the impostor acceptance rate is 9.99% and the equal error rate (EER) is 16.66%. In noisy environments without RLS adaptive filtering TSRs of between 43.07%–51.26% are achieved for SNRs of 0–30 dBs. Meanwhile, after RLS filtering, TSRs of between 50.95%–56.75% are achieved for SNRs 0–30 dB.
利用递推最小二乘自适应滤波器增强噪声环境下的说话人验证
本文提出了一种基于隐马尔可夫模型(HMM)和递归最小二乘(RLS)自适应滤波的说话人验证系统。使用RLS自适应滤波的目的是提高HMM在噪声环境下的性能。马来语口语数字数据库用于测试和验证模块。结果表明,在清洁环境下,HMM的总成功率(TSR)达到89.97%。在说话人验证中,真实说话人拒绝率为25.3%,冒名顶替者接受率为9.99%,等错误率(EER)为16.66%。在无RLS噪声环境下,在信噪比为0 ~ 30 db的情况下,自适应滤波的tsr为43.07% ~ 51.26%。同时,在信噪比为0 ~ 30 dB的情况下,经RLS滤波后的tsr为50.95% ~ 56.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信