A Framework for the Automatic Generation of FPGA-based Near-Data Processing Accelerators in Smart Storage Systems

Lukas Weber, Lukas Sommer, Leonardo Solis-Vasquez, Tobias Vinçon, Christian Knödler, Arthur Bernhardt, Ilia Petrov, Andreas Koch
{"title":"A Framework for the Automatic Generation of FPGA-based Near-Data Processing Accelerators in Smart Storage Systems","authors":"Lukas Weber, Lukas Sommer, Leonardo Solis-Vasquez, Tobias Vinçon, Christian Knödler, Arthur Bernhardt, Ilia Petrov, Andreas Koch","doi":"10.1109/IPDPSW52791.2021.00028","DOIUrl":null,"url":null,"abstract":"Near-Data Processing is a promising approach to overcome the limitations of slow I/O interfaces in the quest to analyze the ever-growing amount of data stored in database systems. Next to CPUs, FPGAs will play an important role for the realization of functional units operating close to data stored in non-volatile memories such as Flash.It is essential that the NDP-device understands formats and layouts of the persistent data, to perform operations in-situ. To this end, carefully optimized format parsers and layout accessors are needed. However, designing such FPGA-based Near-Data Processing accelerators requires significant effort and expertise. To make FPGA-based Near-Data Processing accessible to non-FPGA experts, we will present a framework for the automatic generation of FPGA-based accelerators capable of data filtering and transformation for key-value stores based on simple data-format specifications.The evaluation shows that our framework is able to generate accelerators that are almost identical in performance compared to the manually optimized designs of prior work, while requiring little to no FPGA-specific knowledge and additionally providing improved flexibility and more powerful functionality.","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"105 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Near-Data Processing is a promising approach to overcome the limitations of slow I/O interfaces in the quest to analyze the ever-growing amount of data stored in database systems. Next to CPUs, FPGAs will play an important role for the realization of functional units operating close to data stored in non-volatile memories such as Flash.It is essential that the NDP-device understands formats and layouts of the persistent data, to perform operations in-situ. To this end, carefully optimized format parsers and layout accessors are needed. However, designing such FPGA-based Near-Data Processing accelerators requires significant effort and expertise. To make FPGA-based Near-Data Processing accessible to non-FPGA experts, we will present a framework for the automatic generation of FPGA-based accelerators capable of data filtering and transformation for key-value stores based on simple data-format specifications.The evaluation shows that our framework is able to generate accelerators that are almost identical in performance compared to the manually optimized designs of prior work, while requiring little to no FPGA-specific knowledge and additionally providing improved flexibility and more powerful functionality.
智能存储系统中基于fpga的近数据处理加速器自动生成框架
在分析数据库系统中存储的不断增长的数据量时,近数据处理是克服慢I/O接口限制的一种很有前途的方法。继cpu之后,fpga将在实现与存储在非易失性存储器(如Flash)中的数据接近的功能单元方面发挥重要作用。ndp设备必须理解持久数据的格式和布局,以便在现场执行操作。为此,需要仔细优化格式解析器和布局访问器。然而,设计这种基于fpga的近数据处理加速器需要大量的努力和专业知识。为了使非fpga专家能够访问基于fpga的近数据处理,我们将提出一个框架,用于自动生成基于fpga的加速器,该加速器能够根据简单的数据格式规范对键值存储进行数据过滤和转换。评估表明,我们的框架能够生成与先前工作的手动优化设计相比性能几乎相同的加速器,同时几乎不需要fpga特定知识,并且还提供了更高的灵活性和更强大的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信