Lukas Weber, Lukas Sommer, Leonardo Solis-Vasquez, Tobias Vinçon, Christian Knödler, Arthur Bernhardt, Ilia Petrov, Andreas Koch
{"title":"A Framework for the Automatic Generation of FPGA-based Near-Data Processing Accelerators in Smart Storage Systems","authors":"Lukas Weber, Lukas Sommer, Leonardo Solis-Vasquez, Tobias Vinçon, Christian Knödler, Arthur Bernhardt, Ilia Petrov, Andreas Koch","doi":"10.1109/IPDPSW52791.2021.00028","DOIUrl":null,"url":null,"abstract":"Near-Data Processing is a promising approach to overcome the limitations of slow I/O interfaces in the quest to analyze the ever-growing amount of data stored in database systems. Next to CPUs, FPGAs will play an important role for the realization of functional units operating close to data stored in non-volatile memories such as Flash.It is essential that the NDP-device understands formats and layouts of the persistent data, to perform operations in-situ. To this end, carefully optimized format parsers and layout accessors are needed. However, designing such FPGA-based Near-Data Processing accelerators requires significant effort and expertise. To make FPGA-based Near-Data Processing accessible to non-FPGA experts, we will present a framework for the automatic generation of FPGA-based accelerators capable of data filtering and transformation for key-value stores based on simple data-format specifications.The evaluation shows that our framework is able to generate accelerators that are almost identical in performance compared to the manually optimized designs of prior work, while requiring little to no FPGA-specific knowledge and additionally providing improved flexibility and more powerful functionality.","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"105 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Near-Data Processing is a promising approach to overcome the limitations of slow I/O interfaces in the quest to analyze the ever-growing amount of data stored in database systems. Next to CPUs, FPGAs will play an important role for the realization of functional units operating close to data stored in non-volatile memories such as Flash.It is essential that the NDP-device understands formats and layouts of the persistent data, to perform operations in-situ. To this end, carefully optimized format parsers and layout accessors are needed. However, designing such FPGA-based Near-Data Processing accelerators requires significant effort and expertise. To make FPGA-based Near-Data Processing accessible to non-FPGA experts, we will present a framework for the automatic generation of FPGA-based accelerators capable of data filtering and transformation for key-value stores based on simple data-format specifications.The evaluation shows that our framework is able to generate accelerators that are almost identical in performance compared to the manually optimized designs of prior work, while requiring little to no FPGA-specific knowledge and additionally providing improved flexibility and more powerful functionality.