Low Resolution Brain Source Localization Using EEG Signals

M. A. Jatoi, N. Kamel, S. Musavi, M. S. Shaikh, C. Kumar
{"title":"Low Resolution Brain Source Localization Using EEG Signals","authors":"M. A. Jatoi, N. Kamel, S. Musavi, M. S. Shaikh, C. Kumar","doi":"10.14257/IJHIT.2017.10.7.04","DOIUrl":null,"url":null,"abstract":"Each mental or physical task gives rise to generate electromagnetic activity in the brain. These electrical signals are analyzed by using various neuroimaging techniques which include electroencephalography (EEG), magnetoencephalogy (MEG), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). However, when the brain sources which are responsible for such electrical activity are localized, then it’s called brain source localization or source estimation. This information is utilized to comprehend brain’s physiological, pathological, mental, functional abnormalities. Also, the information is used to diagnose cognitive behaviour of the brain. Various methodologies based upon EEG signals are adopted to localize the active sources such as minimum norm estimation (MNE), low resolution brain electromagnetic tomography (LORETA), standardized LORETA, exact LORETA, multiple signal classification (MUSIC), focal underdetermined system solution (FOCUSS) etc. This research discusses localizing ability of low resolution techniques (LORETA and sLORETA) for various head models (finite difference model and concentric model). The simulations are carried out by using NETSTATION software. The results are compared in terms of activations for same EEG data with the same stimulus provided to subjects. However, it is observed that the combination of finite difference method (FDM) with sLORETA produced best results in terms of source intensity level (nA). Hence, the combination of inverse method sLORETA with FDM produces better source localization.","PeriodicalId":170772,"journal":{"name":"International Journal of Hybrid Information Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hybrid Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJHIT.2017.10.7.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Each mental or physical task gives rise to generate electromagnetic activity in the brain. These electrical signals are analyzed by using various neuroimaging techniques which include electroencephalography (EEG), magnetoencephalogy (MEG), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). However, when the brain sources which are responsible for such electrical activity are localized, then it’s called brain source localization or source estimation. This information is utilized to comprehend brain’s physiological, pathological, mental, functional abnormalities. Also, the information is used to diagnose cognitive behaviour of the brain. Various methodologies based upon EEG signals are adopted to localize the active sources such as minimum norm estimation (MNE), low resolution brain electromagnetic tomography (LORETA), standardized LORETA, exact LORETA, multiple signal classification (MUSIC), focal underdetermined system solution (FOCUSS) etc. This research discusses localizing ability of low resolution techniques (LORETA and sLORETA) for various head models (finite difference model and concentric model). The simulations are carried out by using NETSTATION software. The results are compared in terms of activations for same EEG data with the same stimulus provided to subjects. However, it is observed that the combination of finite difference method (FDM) with sLORETA produced best results in terms of source intensity level (nA). Hence, the combination of inverse method sLORETA with FDM produces better source localization.
利用脑电信号进行低分辨率脑源定位
每一项脑力或体力活动都会在大脑中产生电磁活动。这些电信号通过使用各种神经成像技术进行分析,包括脑电图(EEG)、脑磁图(MEG)、正电子发射断层扫描(PET)和功能磁共振成像(fMRI)。然而,当负责这种电活动的脑源被定位时,就被称为脑源定位或脑源估计。这些信息被用来理解大脑的生理、病理、精神和功能异常。此外,这些信息还用于诊断大脑的认知行为。基于脑电信号,采用最小范数估计(MNE)、低分辨率脑电磁断层扫描(LORETA)、标准化LORETA、精确LORETA、多信号分类(MUSIC)、焦点欠定系统求解(focus)等方法对有源进行定位。本研究探讨了低分辨率技术(LORETA和sLORETA)对各种头部模型(有限差分模型和同心模型)的定位能力。利用NETSTATION软件进行仿真。将结果与提供给受试者的相同刺激的相同脑电图数据的激活情况进行比较。然而,我们观察到,有限差分法(FDM)与sLORETA的结合在源强度水平(nA)方面产生了最好的结果。因此,将逆方法sLORETA与FDM相结合可以获得更好的源定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信