Adaptive precision solvers for sparse linear systems

H. Anzt, J. Dongarra, E. S. Quintana‐Ortí
{"title":"Adaptive precision solvers for sparse linear systems","authors":"H. Anzt, J. Dongarra, E. S. Quintana‐Ortí","doi":"10.1145/2834800.2834802","DOIUrl":null,"url":null,"abstract":"We formulate an implementation of a Jacobi iterative solver for sparse linear systems that iterates the distinct components of the solution with different precision in terms of mantissa length. Starting with very low accuracy, and using an inexpensive test, our technique extends the mantissa length for those component updates when and where this is required. Numerical experiments reveal that, for a solver that pursues IEEE double precision accuracy in the solution (i.e., mantissa of 52 binary digits), the precision required to reach convergence for the distinct components can differ significantly during the iteration so that, during most of this process, only a few components may require operating with the full length of the mantissa. Thus, with operations involving a longer mantissa yielding a higher power usage, energy savings can potentially be obtained by using a truncated format. Finally, we introduce a novel metric which quantifies the average mantissa length during the iteration, and exposes the resource savings of the Jacobi solver with adaptive mantissa.","PeriodicalId":285336,"journal":{"name":"International Workshop on Energy Efficient Supercomputing","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Energy Efficient Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2834800.2834802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We formulate an implementation of a Jacobi iterative solver for sparse linear systems that iterates the distinct components of the solution with different precision in terms of mantissa length. Starting with very low accuracy, and using an inexpensive test, our technique extends the mantissa length for those component updates when and where this is required. Numerical experiments reveal that, for a solver that pursues IEEE double precision accuracy in the solution (i.e., mantissa of 52 binary digits), the precision required to reach convergence for the distinct components can differ significantly during the iteration so that, during most of this process, only a few components may require operating with the full length of the mantissa. Thus, with operations involving a longer mantissa yielding a higher power usage, energy savings can potentially be obtained by using a truncated format. Finally, we introduce a novel metric which quantifies the average mantissa length during the iteration, and exposes the resource savings of the Jacobi solver with adaptive mantissa.
稀疏线性系统的自适应精确求解方法
我们为稀疏线性系统制定了一个Jacobi迭代求解器的实现,该求解器根据尾数长度以不同精度迭代解的不同组成部分。从非常低的精度开始,使用廉价的测试,我们的技术在需要的时间和地点延长了那些组件更新的尾数长度。数值实验表明,对于求解中追求IEEE双精度精度的求解器(即52位二进制尾数),不同分量达到收敛所需的精度在迭代过程中可能存在显著差异,因此在大部分迭代过程中,只有少数分量可能需要使用尾数的完整长度进行操作。因此,涉及较长尾数的操作产生更高的功率使用,可以通过使用截断格式来潜在地节省能源。最后,我们引入了一种量化迭代过程中尾数平均长度的度量,并揭示了自适应尾数的雅可比求解器的资源节约。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信