Development of an Auto-detection and Quantification Algorithm Of Malaria Infection Using Image Processing

M. H. Rahman, Masuma Akter, Md. Rashedul Islam, S. Alam, Md. Arifur Rahman, Fariha Tabassum, Mahmudur Rahman
{"title":"Development of an Auto-detection and Quantification Algorithm Of Malaria Infection Using Image Processing","authors":"M. H. Rahman, Masuma Akter, Md. Rashedul Islam, S. Alam, Md. Arifur Rahman, Fariha Tabassum, Mahmudur Rahman","doi":"10.1109/icaeee54957.2022.9836429","DOIUrl":null,"url":null,"abstract":"Most of the malarial diagnostic methods either depend on manual counting of infected red blood cells or requires complex laboratory facilities. In both cases, the diagnostic is time-consuming, expensive, requires trained personnel, sometimes produce erroneous results due to manual intervention, and hinders rapid diagnostics of malarial infection. Malaria is mostly fatal if not diagnosed and treated promptly, therefore, it is imperative to devise a methodology that provides a rapid, cost-effective, and accurate malarial diagnosis with proper quantification. Here, we propose an image processing-based malaria detection methodology using support vector machine (SVM) that can detect and quantify malarial infection with up to 96% accuracy. The image processing algorithm is implemented on a range of images and the outcomes are in good agreement with the actual diagnostic results thereby, validating the methodology.","PeriodicalId":383872,"journal":{"name":"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaeee54957.2022.9836429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the malarial diagnostic methods either depend on manual counting of infected red blood cells or requires complex laboratory facilities. In both cases, the diagnostic is time-consuming, expensive, requires trained personnel, sometimes produce erroneous results due to manual intervention, and hinders rapid diagnostics of malarial infection. Malaria is mostly fatal if not diagnosed and treated promptly, therefore, it is imperative to devise a methodology that provides a rapid, cost-effective, and accurate malarial diagnosis with proper quantification. Here, we propose an image processing-based malaria detection methodology using support vector machine (SVM) that can detect and quantify malarial infection with up to 96% accuracy. The image processing algorithm is implemented on a range of images and the outcomes are in good agreement with the actual diagnostic results thereby, validating the methodology.
一种基于图像处理的疟疾感染自动检测与量化算法的开发
大多数疟疾诊断方法要么依靠人工计数受感染的红细胞,要么需要复杂的实验室设施。在这两种情况下,诊断都耗时、昂贵,需要训练有素的人员,有时由于人工干预而产生错误的结果,并阻碍疟疾感染的快速诊断。如果不及时诊断和治疗,疟疾大多是致命的,因此,必须设计一种方法,提供快速、具有成本效益和准确的疟疾诊断,并进行适当的量化。在这里,我们提出了一种基于图像处理的疟疾检测方法,该方法使用支持向量机(SVM)来检测和量化疟疾感染,准确率高达96%。该图像处理算法在一系列图像上实现,结果与实际诊断结果吻合较好,从而验证了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信