L. D. de Freitas, J. Vieira, V. J. Farias, H. Hey, P. Caparelli, D.F. de Cruz
{"title":"An optimum ZVS-PWM DC-to-DC converter family: analysis, simulation and experimental results","authors":"L. D. de Freitas, J. Vieira, V. J. Farias, H. Hey, P. Caparelli, D.F. de Cruz","doi":"10.1109/PESC.1992.254668","DOIUrl":null,"url":null,"abstract":"The authors consider a family of DC-to-DC power converters using the lossless commutation pulse-width-modulation (PWM) source feeding resonant disconnecting circuit cell with resonant cycle interruption (LC-PWM-SF-RDC) to overcome the problems present in quasi-resonant converters (QRCs) and QRCs-PWM. The most important property of this family of devices is the ability to regulate output power and voltage by PWM, with constant operating frequency, without load limitation, and without sacrificing the lossless commutation. The authors present the operating principle and design-oriented analysis, output characteristics, relevant equations, and simulation results. These procedures are validated by a prototype laboratory implementation.<<ETX>>","PeriodicalId":402706,"journal":{"name":"PESC '92 Record. 23rd Annual IEEE Power Electronics Specialists Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PESC '92 Record. 23rd Annual IEEE Power Electronics Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESC.1992.254668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
The authors consider a family of DC-to-DC power converters using the lossless commutation pulse-width-modulation (PWM) source feeding resonant disconnecting circuit cell with resonant cycle interruption (LC-PWM-SF-RDC) to overcome the problems present in quasi-resonant converters (QRCs) and QRCs-PWM. The most important property of this family of devices is the ability to regulate output power and voltage by PWM, with constant operating frequency, without load limitation, and without sacrificing the lossless commutation. The authors present the operating principle and design-oriented analysis, output characteristics, relevant equations, and simulation results. These procedures are validated by a prototype laboratory implementation.<>