A Practical Approach Based on Machine Learning to Support Signal Integrity Design

Werner John, Julian Withöft, Emre Ecik, R. Brüning, J. Götze
{"title":"A Practical Approach Based on Machine Learning to Support Signal Integrity Design","authors":"Werner John, Julian Withöft, Emre Ecik, R. Brüning, J. Götze","doi":"10.1109/EMCEurope51680.2022.9901213","DOIUrl":null,"url":null,"abstract":"A PCB design system enhanced with AI/ML modules can support the optimal use of microelectronic components in the development process. To do this, the PCB and circuit designer must be provided with AI-based suggestions for SI-compliant interconnection of components in the early design phase. AI-based modules can also serve as a reference for engineers working in the selection of interconnect structures in the pre-, concurrent-, and post-layout analysis phases but having little or no experience with signal integrity (SI). This paper shows from a practical point of view how to create ML modules for SI analysis. Selected ML modules (k-Nearest Neighbor (kNN) + Neural Network (NN - Keras) + Support Vector Regression (SVR)) for predicting design relevant SI parameters for PCB subnetworks are presented.","PeriodicalId":268262,"journal":{"name":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEurope51680.2022.9901213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A PCB design system enhanced with AI/ML modules can support the optimal use of microelectronic components in the development process. To do this, the PCB and circuit designer must be provided with AI-based suggestions for SI-compliant interconnection of components in the early design phase. AI-based modules can also serve as a reference for engineers working in the selection of interconnect structures in the pre-, concurrent-, and post-layout analysis phases but having little or no experience with signal integrity (SI). This paper shows from a practical point of view how to create ML modules for SI analysis. Selected ML modules (k-Nearest Neighbor (kNN) + Neural Network (NN - Keras) + Support Vector Regression (SVR)) for predicting design relevant SI parameters for PCB subnetworks are presented.
一种基于机器学习支持信号完整性设计的实用方法
通过AI/ML模块增强的PCB设计系统可以在开发过程中支持微电子元件的最佳使用。为此,必须在早期设计阶段为PCB和电路设计人员提供基于ai的si兼容组件互连建议。基于人工智能的模块也可以作为工程师在布局前、并行和布局后分析阶段选择互连结构的参考,但很少或没有信号完整性(SI)经验。本文从实际的角度展示了如何为SI分析创建ML模块。提出了用于预测PCB子网络设计相关SI参数的ML模块(k-最近邻(kNN) +神经网络(NN - Keras) +支持向量回归(SVR))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信