DBVal

K. S. Kumar, R. K., P. S. Prashanth, Mina Tahmasbi Arashloo, V. U., Praveen Tammana
{"title":"DBVal","authors":"K. S. Kumar, R. K., P. S. Prashanth, Mina Tahmasbi Arashloo, V. U., Praveen Tammana","doi":"10.1145/3482898.3483352","DOIUrl":null,"url":null,"abstract":"The P4 software ecosystem to operate programmable data planes is increasingly becoming complex. The packet-processing behavior is defined by several components: the P4 program, the compiler that maps P4 programs to resource-constrained switch pipeline, the control-plane program that installs rules, and the switch software agents that configure the data plane. Bugs in any one or more of these components would potentially introduce packet-processing errors in the data plane. Prior work verifies P4 programs before deployment and found many program bugs. But bugs can happen in other components after the program deployment and may not be found during testing and only manifest themselves in production. In this work, our goal is to detect packet-processing errors induced by bugs that are not caught (or are difficult to catch) before the P4 program deployment. Our key idea is to let P4 programmers specify the intended packet-processing behavior and validate the actual packet-processing behavior against the intended behavior at runtime. We obtain intended behavior from the P4 programmers in the form of assertions, where each assertion specifies which tables and actions should be applied and in what order on a certain subset of traffic. Next, the assertions are compiled and translated to P4 implementation such that the implementation efficiently tracks the packet execution path, that is, the set of tables applied and actions executed, and then validates the tracked behavior at line rate. We show that our techniques can be used to effectively detect bugs that are difficult, if not impossible, to catch with existing techniques for testing and verifying programmable data planes.","PeriodicalId":161157,"journal":{"name":"Proceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3482898.3483352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The P4 software ecosystem to operate programmable data planes is increasingly becoming complex. The packet-processing behavior is defined by several components: the P4 program, the compiler that maps P4 programs to resource-constrained switch pipeline, the control-plane program that installs rules, and the switch software agents that configure the data plane. Bugs in any one or more of these components would potentially introduce packet-processing errors in the data plane. Prior work verifies P4 programs before deployment and found many program bugs. But bugs can happen in other components after the program deployment and may not be found during testing and only manifest themselves in production. In this work, our goal is to detect packet-processing errors induced by bugs that are not caught (or are difficult to catch) before the P4 program deployment. Our key idea is to let P4 programmers specify the intended packet-processing behavior and validate the actual packet-processing behavior against the intended behavior at runtime. We obtain intended behavior from the P4 programmers in the form of assertions, where each assertion specifies which tables and actions should be applied and in what order on a certain subset of traffic. Next, the assertions are compiled and translated to P4 implementation such that the implementation efficiently tracks the packet execution path, that is, the set of tables applied and actions executed, and then validates the tracked behavior at line rate. We show that our techniques can be used to effectively detect bugs that are difficult, if not impossible, to catch with existing techniques for testing and verifying programmable data planes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信