Adaptive Sensing of Dynamic Target State in Heavy Sea Clutter

Y. Li, S. P. Sira, B. Moran, S. Suvorova, D. Cochran, D. Morrell, A. Papandreou-Suppappola
{"title":"Adaptive Sensing of Dynamic Target State in Heavy Sea Clutter","authors":"Y. Li, S. P. Sira, B. Moran, S. Suvorova, D. Cochran, D. Morrell, A. Papandreou-Suppappola","doi":"10.1109/CAMSAP.2007.4497952","DOIUrl":null,"url":null,"abstract":"We propose an adaptive estimation method for the spatio- temporal covariance matrix of sea clutter. The motivation is to enable adaptive detection approaches that rely on accurate estimation of this matrix. The method involves vectorization of the equations for the dynamical system model governing the temporal evolution of the clutter matrix followed by a multiple particle filtering approach to deal with the high dimensionality of the formulation. The estimated sea clutter covariance matrix is applied to the problem of detection of a small target in heavy clutter; effectiveness is demonstrated via simulations.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4497952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose an adaptive estimation method for the spatio- temporal covariance matrix of sea clutter. The motivation is to enable adaptive detection approaches that rely on accurate estimation of this matrix. The method involves vectorization of the equations for the dynamical system model governing the temporal evolution of the clutter matrix followed by a multiple particle filtering approach to deal with the high dimensionality of the formulation. The estimated sea clutter covariance matrix is applied to the problem of detection of a small target in heavy clutter; effectiveness is demonstrated via simulations.
海杂波环境下动态目标状态的自适应感知
提出了一种海杂波时空协方差矩阵的自适应估计方法。动机是启用依赖于该矩阵的准确估计的自适应检测方法。该方法包括对控制杂波矩阵时间演化的动力系统模型的方程进行矢量化,然后采用多粒子滤波方法处理该公式的高维性。将估计的海杂波协方差矩阵应用于重杂波条件下的小目标检测问题;通过仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信