Fluid Limits Applied to Peer to Peer Network Analysis

L. Aspirot, E. Mordecki, G. Rubino
{"title":"Fluid Limits Applied to Peer to Peer Network Analysis","authors":"L. Aspirot, E. Mordecki, G. Rubino","doi":"10.1109/QEST.2011.11","DOIUrl":null,"url":null,"abstract":"The objective of several techniques including fluid limits and mean field approximations is to analyze a stochastic complex system (e.g. Markovian) studying a simplified model (deterministic, represented by ordinary differential equations (ODEs)). In this paper, we explore models proposed for the analysis of BitTorrent P2P systems and we provide the arguments to justify the passage from the stochastic process, under adequate scaling, to a fluid approximation driven by an ODE. We also make the link between the stationary regime of the stochastic models and the fixed points of the associated ODEs. Finally, we analyze the asymptotic distribution of the scaled process.","PeriodicalId":252235,"journal":{"name":"2011 Eighth International Conference on Quantitative Evaluation of SysTems","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Conference on Quantitative Evaluation of SysTems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QEST.2011.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The objective of several techniques including fluid limits and mean field approximations is to analyze a stochastic complex system (e.g. Markovian) studying a simplified model (deterministic, represented by ordinary differential equations (ODEs)). In this paper, we explore models proposed for the analysis of BitTorrent P2P systems and we provide the arguments to justify the passage from the stochastic process, under adequate scaling, to a fluid approximation driven by an ODE. We also make the link between the stationary regime of the stochastic models and the fixed points of the associated ODEs. Finally, we analyze the asymptotic distribution of the scaled process.
应用于点对点网络分析的流体限制
包括流体极限和平均场近似在内的几种技术的目的是分析随机复杂系统(例如马尔可夫系统),研究简化模型(确定性,由常微分方程(ode)表示)。在本文中,我们探讨了用于分析BitTorrent P2P系统的模型,并提供了证明从随机过程过渡到由ODE驱动的流体近似的论据。我们还在随机模型的平稳区和相关ode的不动点之间建立了联系。最后,我们分析了该过程的渐近分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信