Smarter outlier detection and deeper understanding of large-scale taxi trip records: a case study of NYC

Jianting Zhang
{"title":"Smarter outlier detection and deeper understanding of large-scale taxi trip records: a case study of NYC","authors":"Jianting Zhang","doi":"10.1145/2346496.2346521","DOIUrl":null,"url":null,"abstract":"Outlier detection in large-scale taxi trip records has imposed significant technical challenges due to huge data volumes and complex semantics. In this paper, we report our preliminary work on detecting outliers from 166 millions taxi trips in the New York City (NYC) in 2009 through efficient spatial analysis and network analysis using a NAVTEQ street network with half a million edges. As a byproduct of large-scale shortest path computation in outlier detection, betweenness centralities of street network edges are computed and mapped. The techniques can be used to help better understand the connection strengths among different parts of NYC using the large-scale taxi trip records.","PeriodicalId":350527,"journal":{"name":"UrbComp '12","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UrbComp '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2346496.2346521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Outlier detection in large-scale taxi trip records has imposed significant technical challenges due to huge data volumes and complex semantics. In this paper, we report our preliminary work on detecting outliers from 166 millions taxi trips in the New York City (NYC) in 2009 through efficient spatial analysis and network analysis using a NAVTEQ street network with half a million edges. As a byproduct of large-scale shortest path computation in outlier detection, betweenness centralities of street network edges are computed and mapped. The techniques can be used to help better understand the connection strengths among different parts of NYC using the large-scale taxi trip records.
更智能的异常值检测和对大规模出租车出行记录的更深入理解:以纽约市为例
由于庞大的数据量和复杂的语义,大规模出租车出行记录的异常值检测带来了重大的技术挑战。在本文中,我们报告了我们的初步工作,通过高效的空间分析和网络分析,利用具有50万条边的NAVTEQ街道网络,从2009年纽约市(NYC) 1.66亿次出租车出行中检测出异常值。作为离群点检测中大规模最短路径计算的副产品,需要计算和映射街道网络边缘的中间度中心性。这些技术可以用来帮助更好地理解纽约市不同地区之间的连接强度,通过大规模的出租车旅行记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信