Modelos neuronales pulsantes adaptados para el mejoramiento de luminosidad de imágenes cerebrales de gran resolución

Manuel Mejía-Lavalle, Kevin S. Aguilar Domínguez, J. H. S. Azuela, Dante Mújica, Andrea Magadán Salazar
{"title":"Modelos neuronales pulsantes adaptados para el mejoramiento de luminosidad de imágenes cerebrales de gran resolución","authors":"Manuel Mejía-Lavalle, Kevin S. Aguilar Domínguez, J. H. S. Azuela, Dante Mújica, Andrea Magadán Salazar","doi":"10.13053/RCS-148-7-19","DOIUrl":null,"url":null,"abstract":"In this paper it is propose, implement and experiment with two Pulsed Neural Networks based on the Intersection Cortical Model for the enhancement of human brain medical images luminosity . Digital images are widely used in the medicine area, but these can be degraded by several factors. The degradation in its luminosity generates a problem for its correct analysis, since they have a short dynamic range and low contrast. The actual necessity to obtain good quality images joined to the resolution increase tendency, demand new techniques to improve the quality, but in less time. That is why it is necessary to search for paradigms that can take advantage of parallel computing such as Pulse-Coupled Artificial Neural Networks. Experimentation shows that the proposed methods are highly competitive compared versus other techniques mentioned in the specialized literature.","PeriodicalId":220522,"journal":{"name":"Res. Comput. Sci.","volume":"296 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Res. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/RCS-148-7-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper it is propose, implement and experiment with two Pulsed Neural Networks based on the Intersection Cortical Model for the enhancement of human brain medical images luminosity . Digital images are widely used in the medicine area, but these can be degraded by several factors. The degradation in its luminosity generates a problem for its correct analysis, since they have a short dynamic range and low contrast. The actual necessity to obtain good quality images joined to the resolution increase tendency, demand new techniques to improve the quality, but in less time. That is why it is necessary to search for paradigms that can take advantage of parallel computing such as Pulse-Coupled Artificial Neural Networks. Experimentation shows that the proposed methods are highly competitive compared versus other techniques mentioned in the specialized literature.
脉动神经模型适应于提高高分辨率大脑图像的亮度
本文提出、实现并实验了基于交叉皮质模型的两种脉冲神经网络对人脑医学图像亮度的增强。数字图像被广泛应用于医学领域,但这些图像可能会受到几个因素的影响。由于其动态范围短,对比度低,因此其亮度的退化对其正确分析产生了问题。获得高质量图像的实际需要加入了分辨率不断提高的趋势,需要新的技术来提高图像的质量,但要在更短的时间内完成。这就是为什么有必要寻找可以利用并行计算的范例,如脉冲耦合人工神经网络。实验表明,与专业文献中提到的其他技术相比,所提出的方法具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信