S. Ho, K. Ravi., Yingyan Huang, Qian Wang, B. Bhola, Xi Chen, Xiangyu Li
{"title":"Spatial temporal simulation of active optoelectronic and plasmonic devices using a multi-level multi-electron FDTD model","authors":"S. Ho, K. Ravi., Yingyan Huang, Qian Wang, B. Bhola, Xi Chen, Xiangyu Li","doi":"10.1109/AOM.2010.5713550","DOIUrl":null,"url":null,"abstract":"We introduce a recently developed general computational model for the electromagnetic simulations of complex atomic, molecular, or semiconductor media using the finite difference time domain (FDTD) method based on a multi-level multi-electron (MLME) system. We show how this MLME-FDTD model can be used for spatial-temporal simulation of a wide range of active optoelectronic and plasmonic devices. Realistic simulations ranging from semiconductor lasers, to plasmonic lasers, and semiconductor optical amplifiers are illustrated.","PeriodicalId":222199,"journal":{"name":"Advances in Optoelectronics and Micro/nano-optics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics and Micro/nano-optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AOM.2010.5713550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a recently developed general computational model for the electromagnetic simulations of complex atomic, molecular, or semiconductor media using the finite difference time domain (FDTD) method based on a multi-level multi-electron (MLME) system. We show how this MLME-FDTD model can be used for spatial-temporal simulation of a wide range of active optoelectronic and plasmonic devices. Realistic simulations ranging from semiconductor lasers, to plasmonic lasers, and semiconductor optical amplifiers are illustrated.