Multiple Model Iterative Learning Control for FES-based Stroke Rehabilitation

Junlin Zhou, C. Freeman, W. Holderbaum
{"title":"Multiple Model Iterative Learning Control for FES-based Stroke Rehabilitation","authors":"Junlin Zhou, C. Freeman, W. Holderbaum","doi":"10.23919/ACC55779.2023.10155894","DOIUrl":null,"url":null,"abstract":"Functional electrical stimulation (FES) is an effective upper limb stroke rehabilitation technology that helps patients recover lost movement by assisting functional task training. Unfortunately, current FES controllers cannot satisfy the competing demands of high accuracy, robustness to modelling error and limited set-up/identification time needed for clinical or home deployment. To address this, an estimation-based multiple model switched iterative learning control framework is proposed, combining the most successful adaptive learning features of existing FES controllers. A practical design procedure that guarantees robust performance is developed, and efficacy is established across realistic testing scenarios.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"76 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10155894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional electrical stimulation (FES) is an effective upper limb stroke rehabilitation technology that helps patients recover lost movement by assisting functional task training. Unfortunately, current FES controllers cannot satisfy the competing demands of high accuracy, robustness to modelling error and limited set-up/identification time needed for clinical or home deployment. To address this, an estimation-based multiple model switched iterative learning control framework is proposed, combining the most successful adaptive learning features of existing FES controllers. A practical design procedure that guarantees robust performance is developed, and efficacy is established across realistic testing scenarios.
基于fes的脑卒中康复多模型迭代学习控制
功能电刺激(FES)是一种有效的上肢卒中康复技术,通过辅助功能任务训练,帮助患者恢复失去的运动能力。不幸的是,目前的FES控制器无法满足临床或家庭部署所需的高精度、对建模误差的鲁棒性和有限的设置/识别时间的竞争需求。为了解决这个问题,提出了一种基于估计的多模型切换迭代学习控制框架,结合了现有FES控制器最成功的自适应学习特征。开发了一个实用的设计过程,保证了健壮的性能,并在实际的测试场景中建立了有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信