Predicting Quality of Delivery Metrics for Adaptive Video Codec Sessions

Obinna Izima, R. Fréin, M. Davis
{"title":"Predicting Quality of Delivery Metrics for Adaptive Video Codec Sessions","authors":"Obinna Izima, R. Fréin, M. Davis","doi":"10.1109/CloudNet51028.2020.9335813","DOIUrl":null,"url":null,"abstract":"Predicting video quality will continue to be an active area of research given the dominance of video traffic for years to come. Network service practitioners that are poised to handle the strain on the existing limited bandwidth constraints are better placed to be SLA-compliant. The dynamic and time-varying nature of cloud-hosted services require improved techniques to realize accurate models of the systems. To address this challenge: (1) we propose Codec-aware Network Adaptation Agent (cNAA), an online light-weight data learning engine that achieves accurate and correct predictions of quality of delivery (QoD) metrics, namely jitter for video services. cNAA achieves this prediction accuracy by leveraging the available network information in the face of congestion and adaptive codecs; (2) we highlight the short-comings of some baseline machine learning techniques that fail to capture network dynamics and demonstrate their failure in comparison with cNAA; and finally, (3) we demonstrate the efficacy of cNAA under varying network and codec conditions and provide evidence showing that machine learning approaches that incorporate network dynamics are better placed to realize accurate and correct predictions.","PeriodicalId":156419,"journal":{"name":"2020 IEEE 9th International Conference on Cloud Networking (CloudNet)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 9th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet51028.2020.9335813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Predicting video quality will continue to be an active area of research given the dominance of video traffic for years to come. Network service practitioners that are poised to handle the strain on the existing limited bandwidth constraints are better placed to be SLA-compliant. The dynamic and time-varying nature of cloud-hosted services require improved techniques to realize accurate models of the systems. To address this challenge: (1) we propose Codec-aware Network Adaptation Agent (cNAA), an online light-weight data learning engine that achieves accurate and correct predictions of quality of delivery (QoD) metrics, namely jitter for video services. cNAA achieves this prediction accuracy by leveraging the available network information in the face of congestion and adaptive codecs; (2) we highlight the short-comings of some baseline machine learning techniques that fail to capture network dynamics and demonstrate their failure in comparison with cNAA; and finally, (3) we demonstrate the efficacy of cNAA under varying network and codec conditions and provide evidence showing that machine learning approaches that incorporate network dynamics are better placed to realize accurate and correct predictions.
预测自适应视频编解码器会话的交付质量指标
鉴于视频流量在未来几年的主导地位,预测视频质量将继续成为一个活跃的研究领域。准备好处理现有有限带宽约束上的压力的网络服务实践者处于符合sla的较好位置。云托管服务的动态性和时变性需要改进技术来实现系统的精确模型。为了解决这一挑战:(1)我们提出了编解码器感知网络自适应代理(cNAA),这是一个在线轻量级数据学习引擎,可以准确正确地预测交付质量(QoD)指标,即视频服务的抖动。cNAA通过在面对拥塞和自适应编解码器时利用可用的网络信息来实现这种预测精度;(2)我们强调了一些基线机器学习技术的缺点,这些技术无法捕捉网络动态,并与cNAA相比证明了它们的失败;最后,(3)我们证明了cNAA在不同网络和编解码器条件下的有效性,并提供证据表明,结合网络动态的机器学习方法能够更好地实现准确和正确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信