Spoken term detection for OOV terms based on triphone confusion matrix

Yong Xu, Wu Guo, Shan Su, Lirong Dai
{"title":"Spoken term detection for OOV terms based on triphone confusion matrix","authors":"Yong Xu, Wu Guo, Shan Su, Lirong Dai","doi":"10.1109/ISCSLP.2012.6423480","DOIUrl":null,"url":null,"abstract":"The search for out of vocabulary (OOV) query terms in spoken term detection (STD) task is addressed in this paper. The phone level fragment with word-position marker is naturally adopted as the speech recognition decoding unit. Then the triphone confusion matrix (TriCM) is used to expand the query space to compensate for speech recognition errors. And we also propose a new approach to construct triphone confusion matrix using a smoothing method similar with the Katz method to solve the data sparseness problem. Experimental result on the NIST STD06 eval-set conversational telephone speech (CTS) corpus indicates that triphone confusion matrix can provide a relative improvement of 12% in actual term weighted value (ATWV).","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The search for out of vocabulary (OOV) query terms in spoken term detection (STD) task is addressed in this paper. The phone level fragment with word-position marker is naturally adopted as the speech recognition decoding unit. Then the triphone confusion matrix (TriCM) is used to expand the query space to compensate for speech recognition errors. And we also propose a new approach to construct triphone confusion matrix using a smoothing method similar with the Katz method to solve the data sparseness problem. Experimental result on the NIST STD06 eval-set conversational telephone speech (CTS) corpus indicates that triphone confusion matrix can provide a relative improvement of 12% in actual term weighted value (ATWV).
基于三音混淆矩阵的OOV口语词检测
研究了口语词检测(STD)任务中词汇外查询词的搜索问题。自然采用带字位标记的电话级片段作为语音识别解码单元。然后利用三音混淆矩阵(TriCM)扩展查询空间来补偿语音识别误差。我们还提出了一种新的方法,利用类似于Katz方法的平滑方法构造三音混淆矩阵来解决数据稀疏性问题。在NIST STD06评估集会话电话语音(CTS)语料库上的实验结果表明,三音混淆矩阵在实际词加权值(ATWV)上可以提供12%的相对改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信