Scale-Adaptive Regression Position Prediction Tracking

Xiancai Zhang, Zhuang Miao, Yang Li, Yulong Xu, Jiabao Wang, Bo Zhou, Gang Tao
{"title":"Scale-Adaptive Regression Position Prediction Tracking","authors":"Xiancai Zhang, Zhuang Miao, Yang Li, Yulong Xu, Jiabao Wang, Bo Zhou, Gang Tao","doi":"10.1109/ICMIP.2017.19","DOIUrl":null,"url":null,"abstract":"Traditional kernelized correlation filter tracking methods use the target position in the current frame to estimate the moving target initial position in the next frame. For fast moving target, these methods lose the target easily. To cope with this problem, a novel scale-adaptive regression position prediction tracking approach is proposed. This algorithm employs regression prediction method to predict the initial position in the next frame. Then the kernelized correlation filter method is utilized to obtain the final target position. For further improving the accuracy and robustness, we exploit a scale pyramid model to estimate the target scale. Experimental results over 10 benchmark sequences demonstrate the proposed approach performs favorably against the state-of-the-art tracking methods.","PeriodicalId":227455,"journal":{"name":"2017 2nd International Conference on Multimedia and Image Processing (ICMIP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Multimedia and Image Processing (ICMIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIP.2017.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional kernelized correlation filter tracking methods use the target position in the current frame to estimate the moving target initial position in the next frame. For fast moving target, these methods lose the target easily. To cope with this problem, a novel scale-adaptive regression position prediction tracking approach is proposed. This algorithm employs regression prediction method to predict the initial position in the next frame. Then the kernelized correlation filter method is utilized to obtain the final target position. For further improving the accuracy and robustness, we exploit a scale pyramid model to estimate the target scale. Experimental results over 10 benchmark sequences demonstrate the proposed approach performs favorably against the state-of-the-art tracking methods.
尺度自适应回归位置预测跟踪
传统的核相关滤波跟踪方法利用当前帧中的目标位置来估计下一帧中运动目标的初始位置。对于快速运动的目标,这些方法容易丢失目标。针对这一问题,提出了一种新的尺度自适应回归位置预测跟踪方法。该算法采用回归预测方法预测下一帧的初始位置。然后利用核化相关滤波方法得到最终目标位置。为了进一步提高精度和鲁棒性,我们利用尺度金字塔模型来估计目标尺度。在10个基准序列上的实验结果表明,该方法比目前最先进的跟踪方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信