Fetal Hypoxia Detection using CTG Signals and CNN Models

A. P P, Uma V
{"title":"Fetal Hypoxia Detection using CTG Signals and CNN Models","authors":"A. P P, Uma V","doi":"10.47392/irjash.2023.s059","DOIUrl":null,"url":null,"abstract":"Hypoxia is a significant condition causing oxygen deficiency in the fetal blood and accounts for more than 23% of perinatal and infant mortality worldwide in a calendar year. Therefore, these circumstances require more efficient methods for prompt detection of hypoxic condition. Cardiotocography (CTG) is the most common technique used to assess fetal well-being and hypoxic complica-tions. Newly, signal processing techniques bring out an innovative horizon for processing the CTG signals. Herein, we are exploring the usefulness of CTG signals by converting them to Recurrence Plots (RP) and classifying using deep learning models for the more accurate detection of hypoxia. A comparative study of VGG16, ResNet and CNN models is done on the RP data. VGG16 achieved better result with an accuracy of 82.02%.","PeriodicalId":244861,"journal":{"name":"International Research Journal on Advanced Science Hub","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Science Hub","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjash.2023.s059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hypoxia is a significant condition causing oxygen deficiency in the fetal blood and accounts for more than 23% of perinatal and infant mortality worldwide in a calendar year. Therefore, these circumstances require more efficient methods for prompt detection of hypoxic condition. Cardiotocography (CTG) is the most common technique used to assess fetal well-being and hypoxic complica-tions. Newly, signal processing techniques bring out an innovative horizon for processing the CTG signals. Herein, we are exploring the usefulness of CTG signals by converting them to Recurrence Plots (RP) and classifying using deep learning models for the more accurate detection of hypoxia. A comparative study of VGG16, ResNet and CNN models is done on the RP data. VGG16 achieved better result with an accuracy of 82.02%.
CTG信号和CNN模型检测胎儿缺氧
缺氧是导致胎儿血液缺氧的一种重要疾病,在一个日历年里全世界围产期和婴儿死亡率中占23%以上。因此,这些情况需要更有效的方法来及时检测缺氧情况。心脏造影(CTG)是评估胎儿健康和缺氧并发症最常用的技术。新的信号处理技术为CTG信号的处理带来了新的前景。在此,我们通过将CTG信号转换为递归图(RP)并使用深度学习模型进行分类来更准确地检测缺氧,从而探索CTG信号的实用性。在RP数据上对VGG16、ResNet和CNN模型进行了对比研究。VGG16取得了较好的效果,准确率为82.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信