Some Construction of Generalized Frames with Adjointable Operators in Hilbert C∗−modules

M. Rossafi, F. Nhari
{"title":"Some Construction of Generalized Frames with Adjointable Operators in Hilbert C∗−modules","authors":"M. Rossafi, F. Nhari","doi":"10.3126/jnms.v5i1.47378","DOIUrl":null,"url":null,"abstract":"Generalized frame called g-frame was first proposed using a sequence of adjointable operators to deal with all the existing frames as a united object. In fact, the g-frame is an extension of ordinary frames. Generalized frames with adjointable operators called K-g-frame is a generalization of a g-frame. It can be used to reconstruct elements from the range of a adjointable operator K. K-g-frames have a certain advantage compared with g-frames in practical applications. This paper is devoted to study some properties of K-g-frame in Hilbert C∗ -module, we characterize the concept of K-g-frame by quotient maps. Also discus some result of the dual K-g-Bessel sequences of K-g-frame in Hilbert C∗ -module. Our results are more general than those previously obtained. It is shown that the results we obtained can immediately lead to the existing corresponding results in Hilbert Spaces.","PeriodicalId":401623,"journal":{"name":"Journal of Nepal Mathematical Society","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jnms.v5i1.47378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Generalized frame called g-frame was first proposed using a sequence of adjointable operators to deal with all the existing frames as a united object. In fact, the g-frame is an extension of ordinary frames. Generalized frames with adjointable operators called K-g-frame is a generalization of a g-frame. It can be used to reconstruct elements from the range of a adjointable operator K. K-g-frames have a certain advantage compared with g-frames in practical applications. This paper is devoted to study some properties of K-g-frame in Hilbert C∗ -module, we characterize the concept of K-g-frame by quotient maps. Also discus some result of the dual K-g-Bessel sequences of K-g-frame in Hilbert C∗ -module. Our results are more general than those previously obtained. It is shown that the results we obtained can immediately lead to the existing corresponding results in Hilbert Spaces.
Hilbert C *−模中具有可伴算子的广义框架的若干构造
首先提出了一种广义框架,即g-框架,该框架使用可伴随算子序列将所有现有框架作为一个统一的对象来处理。实际上,g坐标系是普通坐标系的延伸。具有可伴算子的广义坐标系称为k -g坐标系,是对g坐标系的推广。它可以用来在可伴算子k的范围内重构元素。在实际应用中,k -g坐标系与g坐标系相比具有一定的优势。本文研究了Hilbert C * -模中k -g坐标系的一些性质,用商映射刻画了k -g坐标系的概念。讨论了Hilbert C * -模中k -g-框架的对偶K-g-Bessel序列的一些结果。我们的结果比以前得到的结果更普遍。结果表明,我们得到的结果可以直接推导出希尔伯特空间中已有的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信