Qing Wang, Youyou Lu, Zhongjie Wu, Fan Yang, J. Shu
{"title":"Improving the Concurrency Performance of Persistent Memory Transactions on Multicores","authors":"Qing Wang, Youyou Lu, Zhongjie Wu, Fan Yang, J. Shu","doi":"10.1109/DAC18072.2020.9218554","DOIUrl":null,"url":null,"abstract":"Persistent memory provides data persistence to in-memory transaction systems, enabling full ACID properties. However, high data persistence worsens the concurrency performance due to delayed execution of conflicted transactions on multicores. In this paper, we propose SP 3 (SPeculative Parallel Persistence) to improve the concurrency performance of persistent memory transactions. SP3 keeps the dependencies between different transactions in a DAG (direct acyclic graph) by detecting conflicts in the read/write sets, and speculatively executes conflicted transactions without waiting for the completeness of data persistence. Evaluation shows that SP3 significantly improves concurrency performance and achieves almost linear scalability in most evaluated workloads.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Persistent memory provides data persistence to in-memory transaction systems, enabling full ACID properties. However, high data persistence worsens the concurrency performance due to delayed execution of conflicted transactions on multicores. In this paper, we propose SP 3 (SPeculative Parallel Persistence) to improve the concurrency performance of persistent memory transactions. SP3 keeps the dependencies between different transactions in a DAG (direct acyclic graph) by detecting conflicts in the read/write sets, and speculatively executes conflicted transactions without waiting for the completeness of data persistence. Evaluation shows that SP3 significantly improves concurrency performance and achieves almost linear scalability in most evaluated workloads.